Uses of Class
org.hipparchus.geometry.euclidean.threed.FieldVector3D
Packages that use FieldVector3D
Package
Description
This package provides basic 3D geometry components.
-
Uses of FieldVector3D in org.hipparchus.geometry.euclidean.threed
Methods in org.hipparchus.geometry.euclidean.threed that return FieldVector3DModifier and TypeMethodDescriptionFieldVector3D.add(double factor, FieldVector3D<T> v) Add a scaled vector to the instance.Add a scaled vector to the instance.FieldVector3D.add(FieldVector3D<T> v) Add a vector to the instance.Add a vector to the instance.FieldVector3D.add(T factor, FieldVector3D<T> v) Add a scaled vector to the instance.Add a scaled vector to the instance.FieldRotation.applyInverseTo(FieldVector3D<T> u) Apply the inverse of the rotation to a vector.static <T extends CalculusFieldElement<T>>
FieldVector3D<T> FieldRotation.applyInverseTo(Rotation r, FieldVector3D<T> u) Apply the inverse of a rotation to a vector.FieldRotation.applyInverseTo(Vector3D u) Apply the inverse of the rotation to a vector.FieldRotation.applyTo(FieldVector3D<T> u) Apply the rotation to a vector.static <T extends CalculusFieldElement<T>>
FieldVector3D<T> FieldRotation.applyTo(Rotation r, FieldVector3D<T> u) Apply a rotation to a vector.Apply the rotation to a vector.FieldVector3D.blendArithmeticallyWith(FieldVector3D<T> other, T blendingValue) Blend arithmetically this instance with another one.FieldLine.closestPoint(FieldLine<T> line) Compute the point of the instance closest to another line.FieldVector3D.crossProduct(FieldVector3D<T> v) Compute the cross-product of the instance with another vector.static <T extends CalculusFieldElement<T>>
FieldVector3D<T> FieldVector3D.crossProduct(FieldVector3D<T> v1, FieldVector3D<T> v2) Compute the cross-product of two vectors.static <T extends CalculusFieldElement<T>>
FieldVector3D<T> FieldVector3D.crossProduct(FieldVector3D<T> v1, Vector3D v2) Compute the cross-product of two vectors.FieldVector3D.crossProduct(Vector3D v) Compute the cross-product of the instance with another vector.static <T extends CalculusFieldElement<T>>
FieldVector3D<T> FieldVector3D.crossProduct(Vector3D v1, FieldVector3D<T> v2) Compute the cross-product of two vectors.FieldRotation.getAxis(RotationConvention convention) Get the normalized axis of the rotation.FieldLine.getDirection()Get the normalized direction vector.static <T extends CalculusFieldElement<T>>
FieldVector3D<T> Get opposite of the first canonical vector (coordinates: -1, 0, 0).static <T extends CalculusFieldElement<T>>
FieldVector3D<T> Get opposite of the second canonical vector (coordinates: 0, -1, 0).static <T extends CalculusFieldElement<T>>
FieldVector3D<T> Get opposite of the third canonical vector (coordinates: 0, 0, -1).static <T extends CalculusFieldElement<T>>
FieldVector3D<T> Get a vector with all coordinates set to NaN.static <T extends CalculusFieldElement<T>>
FieldVector3D<T> FieldVector3D.getNegativeInfinity(Field<T> field) Get a vector with all coordinates set to negative infinity.FieldLine.getOrigin()Get the line point closest to the origin.static <T extends CalculusFieldElement<T>>
FieldVector3D<T> Get first canonical vector (coordinates: 1, 0, 0).static <T extends CalculusFieldElement<T>>
FieldVector3D<T> Get second canonical vector (coordinates: 0, 1, 0).static <T extends CalculusFieldElement<T>>
FieldVector3D<T> Get third canonical vector (coordinates: 0, 0, 1).static <T extends CalculusFieldElement<T>>
FieldVector3D<T> FieldVector3D.getPositiveInfinity(Field<T> field) Get a vector with all coordinates set to positive infinity.static <T extends CalculusFieldElement<T>>
FieldVector3D<T> Get null vector (coordinates: 0, 0, 0).FieldLine.intersection(FieldLine<T> line) Get the intersection point of the instance and another line.FieldVector3D.negate()Get the opposite of the instance.FieldVector3D.normalize()Get a normalized vector aligned with the instance.FieldVector3D.orthogonal()Get a vector orthogonal to the instance.FieldLine.pointAt(double abscissa) Get one point from the line.Get one point from the line.FieldVector3D.scalarMultiply(double a) Multiply the instance by a scalar.FieldVector3D.scalarMultiply(T a) Multiply the instance by a scalar.FieldVector3D.subtract(double factor, FieldVector3D<T> v) Subtract a scaled vector from the instance.Subtract a scaled vector from the instance.FieldVector3D.subtract(FieldVector3D<T> v) Subtract a vector from the instance.Subtract a vector from the instance.FieldVector3D.subtract(T factor, FieldVector3D<T> v) Subtract a scaled vector from the instance.Subtract a scaled vector from the instance.Methods in org.hipparchus.geometry.euclidean.threed with parameters of type FieldVector3DModifier and TypeMethodDescriptionFieldVector3D.add(double factor, FieldVector3D<T> v) Add a scaled vector to the instance.FieldVector3D.add(FieldVector3D<T> v) Add a vector to the instance.FieldVector3D.add(T factor, FieldVector3D<T> v) Add a scaled vector to the instance.static <T extends CalculusFieldElement<T>>
TFieldVector3D.angle(FieldVector3D<T> v1, FieldVector3D<T> v2) Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D.angle(FieldVector3D<T> v1, Vector3D v2) Compute the angular separation between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D.angle(Vector3D v1, FieldVector3D<T> v2) Compute the angular separation between two vectors.FieldRotation.applyInverseTo(FieldVector3D<T> u) Apply the inverse of the rotation to a vector.static <T extends CalculusFieldElement<T>>
FieldVector3D<T> FieldRotation.applyInverseTo(Rotation r, FieldVector3D<T> u) Apply the inverse of a rotation to a vector.FieldRotation.applyTo(FieldVector3D<T> u) Apply the rotation to a vector.static <T extends CalculusFieldElement<T>>
FieldVector3D<T> FieldRotation.applyTo(Rotation r, FieldVector3D<T> u) Apply a rotation to a vector.FieldVector3D.blendArithmeticallyWith(FieldVector3D<T> other, T blendingValue) Blend arithmetically this instance with another one.booleanFieldLine.contains(FieldVector3D<T> p) Check if the instance contains a point.FieldVector3D.crossProduct(FieldVector3D<T> v) Compute the cross-product of the instance with another vector.static <T extends CalculusFieldElement<T>>
FieldVector3D<T> FieldVector3D.crossProduct(FieldVector3D<T> v1, FieldVector3D<T> v2) Compute the cross-product of two vectors.static <T extends CalculusFieldElement<T>>
FieldVector3D<T> FieldVector3D.crossProduct(FieldVector3D<T> v1, Vector3D v2) Compute the cross-product of two vectors.static <T extends CalculusFieldElement<T>>
FieldVector3D<T> FieldVector3D.crossProduct(Vector3D v1, FieldVector3D<T> v2) Compute the cross-product of two vectors.FieldLine.distance(FieldVector3D<T> p) Compute the distance between the instance and a point.FieldVector3D.distance(FieldVector3D<T> v) Compute the distance between the instance and another vector according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D.distance(FieldVector3D<T> v1, FieldVector3D<T> v2) Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D.distance(FieldVector3D<T> v1, Vector3D v2) Compute the distance between two vectors according to the L2 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D.distance(Vector3D v1, FieldVector3D<T> v2) Compute the distance between two vectors according to the L2 norm.FieldVector3D.distance1(FieldVector3D<T> v) Compute the distance between the instance and another vector according to the L1 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D.distance1(FieldVector3D<T> v1, FieldVector3D<T> v2) Compute the distance between two vectors according to the L1 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D.distance1(FieldVector3D<T> v1, Vector3D v2) Compute the distance between two vectors according to the L1 norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D.distance1(Vector3D v1, FieldVector3D<T> v2) Compute the distance between two vectors according to the L1 norm.FieldVector3D.distanceInf(FieldVector3D<T> v) Compute the distance between the instance and another vector according to the L∞ norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D.distanceInf(FieldVector3D<T> v1, FieldVector3D<T> v2) Compute the distance between two vectors according to the L∞ norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D.distanceInf(FieldVector3D<T> v1, Vector3D v2) Compute the distance between two vectors according to the L∞ norm.static <T extends CalculusFieldElement<T>>
TFieldVector3D.distanceInf(Vector3D v1, FieldVector3D<T> v2) Compute the distance between two vectors according to the L∞ norm.FieldVector3D.distanceSq(FieldVector3D<T> v) Compute the square of the distance between the instance and another vector.static <T extends CalculusFieldElement<T>>
TFieldVector3D.distanceSq(FieldVector3D<T> v1, FieldVector3D<T> v2) Compute the square of the distance between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D.distanceSq(FieldVector3D<T> v1, Vector3D v2) Compute the square of the distance between two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D.distanceSq(Vector3D v1, FieldVector3D<T> v2) Compute the square of the distance between two vectors.FieldVector3D.dotProduct(FieldVector3D<T> v) Compute the dot-product of the instance and another vector.static <T extends CalculusFieldElement<T>>
TFieldVector3D.dotProduct(FieldVector3D<T> v1, FieldVector3D<T> v2) Compute the dot-product of two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D.dotProduct(FieldVector3D<T> v1, Vector3D v2) Compute the dot-product of two vectors.static <T extends CalculusFieldElement<T>>
TFieldVector3D.dotProduct(Vector3D v1, FieldVector3D<T> v2) Compute the dot-product of two vectors.FieldLine.getAbscissa(FieldVector3D<T> point) Get the abscissa of a point with respect to the line.voidFieldLine.reset(FieldVector3D<T> p1, FieldVector3D<T> p2) Reset the instance as if built from two points.FieldVector3D.subtract(double factor, FieldVector3D<T> v) Subtract a scaled vector from the instance.FieldVector3D.subtract(FieldVector3D<T> v) Subtract a vector from the instance.FieldVector3D.subtract(T factor, FieldVector3D<T> v) Subtract a scaled vector from the instance.Constructors in org.hipparchus.geometry.euclidean.threed with parameters of type FieldVector3DModifierConstructorDescriptionFieldLine(FieldVector3D<T> p1, FieldVector3D<T> p2, double tolerance) Build a line from two points.FieldRotation(FieldVector3D<T> u, FieldVector3D<T> v) Build one of the rotations that transform one vector into another one.FieldRotation(FieldVector3D<T> u1, FieldVector3D<T> u2, FieldVector3D<T> v1, FieldVector3D<T> v2) Build the rotation that transforms a pair of vectors into another pair.FieldRotation(FieldVector3D<T> axis, T angle, RotationConvention convention) Build a rotation from an axis and an angle.FieldVector3D(double a, FieldVector3D<T> u) Multiplicative constructor.FieldVector3D(double a1, FieldVector3D<T> u1, double a2, FieldVector3D<T> u2) Linear constructor.FieldVector3D(double a1, FieldVector3D<T> u1, double a2, FieldVector3D<T> u2, double a3, FieldVector3D<T> u3) Linear constructor.FieldVector3D(double a1, FieldVector3D<T> u1, double a2, FieldVector3D<T> u2, double a3, FieldVector3D<T> u3, double a4, FieldVector3D<T> u4) Linear constructor.FieldVector3D(T a, FieldVector3D<T> u) Multiplicative constructor.FieldVector3D(T a1, FieldVector3D<T> u1, T a2, FieldVector3D<T> u2) Linear constructor.FieldVector3D(T a1, FieldVector3D<T> u1, T a2, FieldVector3D<T> u2, T a3, FieldVector3D<T> u3) Linear constructor.FieldVector3D(T a1, FieldVector3D<T> u1, T a2, FieldVector3D<T> u2, T a3, FieldVector3D<T> u3, T a4, FieldVector3D<T> u4) Linear constructor.