Uses of Interface
org.hipparchus.distribution.RealDistribution
Packages that use RealDistribution
Package
Description
Implementations of common continuous distributions.
Random number and random data generators.
Various examples.
Statistical methods for fitting distributions.
Classes providing hypothesis testing.
-
Uses of RealDistribution in org.hipparchus.distribution.continuous
Classes in org.hipparchus.distribution.continuous that implement RealDistributionModifier and TypeClassDescriptionclassBase class for probability distributions on the reals.classImplements the Beta distribution.classImplementation of the Cauchy distribution.classImplementation of the chi-squared distribution.classImplementation of the constant real distribution.classImplementation of a real-valuedEnumeratedDistribution.classImplementation of the exponential distribution.classImplementation of the F-distribution.classImplementation of the Gamma distribution.classThis class implements the Gumbel distribution.classThis class implements the Laplace distribution.classThis class implements the Lévy distribution.classThis class implements the Logistic distribution.classImplementation of the log-normal (gaussian) distribution.classThis class implements the Nakagami distribution.classImplementation of the normal (gaussian) distribution.classImplementation of the Pareto distribution.classImplementation of Student's t-distribution.classImplementation of the triangular real distribution.classImplementation of the uniform real distribution.classImplementation of the Weibull distribution. -
Uses of RealDistribution in org.hipparchus.random
Methods in org.hipparchus.random with parameters of type RealDistributionModifier and TypeMethodDescriptiondoubleRandomDataGenerator.nextDeviate(RealDistribution dist) Returns a random deviate from the given distribution.double[]RandomDataGenerator.nextDeviates(RealDistribution dist, int size) Returns an array of random deviates from the given distribution. -
Uses of RealDistribution in org.hipparchus.samples
Methods in org.hipparchus.samples with parameters of type RealDistributionModifier and TypeMethodDescriptionstatic voidRealDistributionComparison.addCDFSeries(com.xeiam.xchart.Chart chart, RealDistribution distribution, String desc, int lowerBound, int upperBound) Add a CDF series.static voidRealDistributionComparison.addPDFSeries(com.xeiam.xchart.Chart chart, RealDistribution distribution, String desc, int lowerBound, int upperBound) Add a PDF series.static JComponentRealDistributionComparison.createComponent(String distributionName, int minX, int maxX, String[] seriesText, RealDistribution... series) Create a component. -
Uses of RealDistribution in org.hipparchus.stat.fitting
Classes in org.hipparchus.stat.fitting that implement RealDistributionModifier and TypeClassDescriptionclassRepresents an empirical probability distribution -- a probability distribution derived from observed data without making any assumptions about the functional form of the population distribution that the data come from.Methods in org.hipparchus.stat.fitting that return RealDistributionModifier and TypeMethodDescriptionprotected RealDistributionEmpiricalDistribution.getKernel(StreamingStatistics bStats) The within-bin smoothing kernel. -
Uses of RealDistribution in org.hipparchus.stat.inference
Methods in org.hipparchus.stat.inference with parameters of type RealDistributionModifier and TypeMethodDescriptionstatic doubleInferenceTestUtils.kolmogorovSmirnovStatistic(RealDistribution dist, double[] data) Computes the one-sample Kolmogorov-Smirnov test statistic, \(D_n=\sup_x |F_n(x)-F(x)|\) where \(F\) is the distribution (cdf) function associated withdistribution, \(n\) is the length ofdataand \(F_n\) is the empirical distribution that puts mass \(1/n\) at each of the values indata.doubleKolmogorovSmirnovTest.kolmogorovSmirnovStatistic(RealDistribution distribution, double[] data) Computes the one-sample Kolmogorov-Smirnov test statistic, \(D_n=\sup_x |F_n(x)-F(x)|\) where \(F\) is the distribution (cdf) function associated withdistribution, \(n\) is the length ofdataand \(F_n\) is the empirical distribution that puts mass \(1/n\) at each of the values indata.static doubleInferenceTestUtils.kolmogorovSmirnovTest(RealDistribution dist, double[] data) Computes the p-value, or observed significance level, of a one-sample Kolmogorov-Smirnov test evaluating the null hypothesis thatdataconforms todistribution.static doubleInferenceTestUtils.kolmogorovSmirnovTest(RealDistribution dist, double[] data, boolean strict) Computes the p-value, or observed significance level, of a one-sample Kolmogorov-Smirnov test evaluating the null hypothesis thatdataconforms todistribution.static booleanInferenceTestUtils.kolmogorovSmirnovTest(RealDistribution dist, double[] data, double alpha) Performs a Kolmogorov-Smirnov test evaluating the null hypothesis thatdataconforms todistribution.doubleKolmogorovSmirnovTest.kolmogorovSmirnovTest(RealDistribution distribution, double[] data) Computes the p-value, or observed significance level, of a one-sample Kolmogorov-Smirnov test evaluating the null hypothesis thatdataconforms todistribution.doubleKolmogorovSmirnovTest.kolmogorovSmirnovTest(RealDistribution distribution, double[] data, boolean exact) Computes the p-value, or observed significance level, of a one-sample Kolmogorov-Smirnov test evaluating the null hypothesis thatdataconforms todistribution.booleanKolmogorovSmirnovTest.kolmogorovSmirnovTest(RealDistribution distribution, double[] data, double alpha) Performs a Kolmogorov-Smirnov test evaluating the null hypothesis thatdataconforms todistribution.