Class LaplaceDistribution
java.lang.Object
org.hipparchus.distribution.continuous.AbstractRealDistribution
org.hipparchus.distribution.continuous.LaplaceDistribution
- All Implemented Interfaces:
Serializable,RealDistribution
This class implements the Laplace distribution.
- See Also:
-
Field Summary
Fields inherited from class org.hipparchus.distribution.continuous.AbstractRealDistribution
DEFAULT_SOLVER_ABSOLUTE_ACCURACY -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptiondoublecumulativeProbability(double x) For a random variableXwhose values are distributed according to this distribution, this method returnsP(X <= x).doubledensity(double x) Returns the probability density function (PDF) of this distribution evaluated at the specified pointx.doubleAccess the location parameter,mu.doubleUse this method to get the numerical value of the mean of this distribution.doubleUse this method to get the numerical value of the variance of this distribution.doublegetScale()Access the scale parameter,beta.doubleAccess the lower bound of the support.doubleAccess the upper bound of the support.doubleinverseCumulativeProbability(double p) Computes the quantile function of this distribution.booleanUse this method to get information about whether the support is connected, i.e. whether all values between the lower and upper bound of the support are included in the support.Methods inherited from class org.hipparchus.distribution.continuous.AbstractRealDistribution
getSolverAbsoluteAccuracy, logDensity, probability
-
Constructor Details
-
LaplaceDistribution
Build a new instance.- Parameters:
mu- location parameterbeta- scale parameter (must be positive)- Throws:
MathIllegalArgumentException- ifbeta <= 0
-
-
Method Details
-
getLocation
public double getLocation()Access the location parameter,mu.- Returns:
- the location parameter.
-
getScale
public double getScale()Access the scale parameter,beta.- Returns:
- the scale parameter.
-
density
public double density(double x) Returns the probability density function (PDF) of this distribution evaluated at the specified pointx. In general, the PDF is the derivative of theCDF. If the derivative does not exist atx, then an appropriate replacement should be returned, e.g.Double.POSITIVE_INFINITY,Double.NaN, or the limit inferior or limit superior of the difference quotient.- Parameters:
x- the point at which the PDF is evaluated- Returns:
- the value of the probability density function at point
x
-
cumulativeProbability
public double cumulativeProbability(double x) For a random variableXwhose values are distributed according to this distribution, this method returnsP(X <= x). In other words, this method represents the (cumulative) distribution function (CDF) for this distribution.- Parameters:
x- the point at which the CDF is evaluated- Returns:
- the probability that a random variable with this
distribution takes a value less than or equal to
x
-
inverseCumulativeProbability
Computes the quantile function of this distribution. For a random variableXdistributed according to this distribution, the returned value isinf{x in R | P(X<=x) >= p}for0 < p <= 1,inf{x in R | P(X<=x) > 0}forp = 0.
RealDistribution.getSupportLowerBound()forp = 0,RealDistribution.getSupportUpperBound()forp = 1.
- Specified by:
inverseCumulativeProbabilityin interfaceRealDistribution- Overrides:
inverseCumulativeProbabilityin classAbstractRealDistribution- Parameters:
p- the cumulative probability- Returns:
- the smallest
p-quantile of this distribution (largest 0-quantile forp = 0) - Throws:
MathIllegalArgumentException- ifp < 0orp > 1
-
getNumericalMean
public double getNumericalMean()Use this method to get the numerical value of the mean of this distribution.- Returns:
- the mean or
Double.NaNif it is not defined
-
getNumericalVariance
public double getNumericalVariance()Use this method to get the numerical value of the variance of this distribution.- Returns:
- the variance (possibly
Double.POSITIVE_INFINITYas for certain cases inTDistribution) orDouble.NaNif it is not defined
-
getSupportLowerBound
public double getSupportLowerBound()Access the lower bound of the support. This method must return the same value asinverseCumulativeProbability(0). In other words, this method must returninf {x in R | P(X <= x) > 0}.- Returns:
- lower bound of the support (might be
Double.NEGATIVE_INFINITY)
-
getSupportUpperBound
public double getSupportUpperBound()Access the upper bound of the support. This method must return the same value asinverseCumulativeProbability(1). In other words, this method must returninf {x in R | P(X <= x) = 1}.- Returns:
- upper bound of the support (might be
Double.POSITIVE_INFINITY)
-
isSupportConnected
public boolean isSupportConnected()Use this method to get information about whether the support is connected, i.e. whether all values between the lower and upper bound of the support are included in the support.- Returns:
- whether the support is connected or not
-