Class TaylorMap
- All Implemented Interfaces:
DifferentialAlgebra
A Taylor map is a set of n DerivativeStructure
\((f_1, f_2, \ldots, f_n)\) depending on m parameters \((p_1, p_2, \ldots, p_m)\),
with positive n and m.
- Since:
- 2.2
-
Constructor Summary
ConstructorsConstructorDescriptionTaylorMap(double[] point, DerivativeStructure[] functions) Simple constructor.TaylorMap(int parameters, int order, int nbFunctions) Constructor for identity map. -
Method Summary
Modifier and TypeMethodDescriptionCompose the instance with another Taylor map as \(\mathrm{this} \circ \mathrm{other}\).intGet the number of free parameters.getFunction(int i) Get a function from the map.intGet the number of functions of the map.intgetOrder()Get the maximum derivation order.double[]getPoint()Get the point at which map is evaluated.invert(MatrixDecomposer decomposer) Invert the instance.double[]value(double... deltaP) Evaluate Taylor expansion of the map at some offset.
-
Constructor Details
-
TaylorMap
Simple constructor.The number of number of parameters and derivation orders of all functions must match.
- Parameters:
point- point at which map is evaluatedfunctions- functions composing the map (must contain at least one element)
-
TaylorMap
public TaylorMap(int parameters, int order, int nbFunctions) Constructor for identity map.The identity is considered to be evaluated at origin.
- Parameters:
parameters- number of free parametersorder- derivation ordernbFunctions- number of functions
-
-
Method Details
-
getFreeParameters
public int getFreeParameters()Get the number of free parameters.- Specified by:
getFreeParametersin interfaceDifferentialAlgebra- Returns:
- number of free parameters
-
getOrder
public int getOrder()Get the maximum derivation order.- Specified by:
getOrderin interfaceDifferentialAlgebra- Returns:
- maximum derivation order
-
getNbFunctions
public int getNbFunctions()Get the number of functions of the map.- Returns:
- number of functions of the map
-
getPoint
public double[] getPoint()Get the point at which map is evaluated.- Returns:
- point at which map is evaluated
-
getFunction
Get a function from the map.- Parameters:
i- index of the function (must be between 0 included andgetNbFunctions()excluded- Returns:
- function at index i
-
value
public double[] value(double... deltaP) Evaluate Taylor expansion of the map at some offset.- Parameters:
deltaP- parameters offsets \((\Delta p_1, \Delta p_2, \ldots, \Delta p_n)\)- Returns:
- value of the Taylor expansion at \((p_1 + \Delta p_1, p_2 + \Delta p_2, \ldots, p_n + \Delta p_n)\)
-
compose
Compose the instance with another Taylor map as \(\mathrm{this} \circ \mathrm{other}\).- Parameters:
other- map with which instance must be composed- Returns:
- composed map \(\mathrm{this} \circ \mathrm{other}\)
-
invert
Invert the instance.Consider
Taylor expansionof the map with small parameters offsets \((\Delta p_1, \Delta p_2, \ldots, \Delta p_n)\) which leads to evaluation offsets \((f_1 + df_1, f_2 + df_2, \ldots, f_n + df_n)\). The map inversion defines a Taylor map that computes \((\Delta p_1, \Delta p_2, \ldots, \Delta p_n)\) from \((df_1, df_2, \ldots, df_n)\).The map must be square to be invertible (i.e. the number of functions and the number of parameters in the functions must match)
- Parameters:
decomposer- matrix decomposer to user for inverting the linear part- Returns:
- inverted map
- See Also:
-