Class SparseGradient
- All Implemented Interfaces:
Serializable,Derivative<SparseGradient>,Derivative1<SparseGradient>,DifferentialAlgebra,CalculusFieldElement<SparseGradient>,FieldElement<SparseGradient>
This class plays a similar role to DerivativeStructure, with
a focus on efficiency when dealing with large number of independent variables
and most computation depend only on a few of them, and when only first derivative
is desired. When these conditions are met, this class should be much faster than
DerivativeStructure and use less memory.
- See Also:
-
Method Summary
Modifier and TypeMethodDescriptionabs()absolute value.Compute this + a.voidAdd in place.Two arguments arc tangent operation.static SparseGradientTwo arguments arc tangent operation.compose(double... f) Compute composition of the instance by a univariate function.compose(double f0, double f1) Compute composition of the instance by a univariate function differentiable at order 1.copySign(double sign) Returns the instance with the sign of the argument.copySign(SparseGradient sign) Returns the instance with the sign of the argument.static SparseGradientcreateConstant(double value) Factory method creating a constant.static SparseGradientcreateVariable(int idx, double value) Factory method creating an independent variable.divide(double c) '÷' operator.Compute this ÷ a.booleanTest for the equality of two sparse gradients.Get the addendum to the real value of the number.doublegetDerivative(int index) Get the derivative with respect to a particular index variable.getField()Get theFieldto which the instance belongs.intGet the number of free parameters.doublegetPartialDerivative(int... orders) Get a partial derivative.getPi()Get the Archimedes constant π.doublegetValue()Get the value of the function.inthashCode()Get a hashCode for the derivative structure.Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.static SparseGradientReturns the hypotenuse of a triangle with sidesxandy- sqrt(x2 +y2) avoiding intermediate overflow or underflow.linearCombination(double[] a, SparseGradient[] b) Compute a linear combination.linearCombination(double a1, SparseGradient b1, double a2, SparseGradient b2) Compute a linear combination.linearCombination(double a1, SparseGradient b1, double a2, SparseGradient b2, double a3, SparseGradient b3) Compute a linear combination.linearCombination(double a1, SparseGradient b1, double a2, SparseGradient b2, double a3, SparseGradient b3, double a4, SparseGradient b4) Compute a linear combination.linearCombination(SparseGradient[] a, SparseGradient[] b) Compute a linear combination.linearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2) Compute a linear combination.linearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2, SparseGradient a3, SparseGradient b3) Compute a linear combination.linearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2, SparseGradient a3, SparseGradient b3, SparseGradient a4, SparseGradient b4) Compute a linear combination.multiply(double c) '×' operator.multiply(int n) Compute n × this.Compute this × a.voidMultiply in place.negate()Returns the additive inverse ofthiselement.newInstance(double v) Create an instance corresponding to a constant real value.pow(double p) Power operation.static SparseGradientpow(double a, SparseGradient x) Compute ax where a is a double and x aSparseGradientpow(int n) Integer power operation.remainder(double a) IEEE remainder operator.IEEE remainder operator.scalb(int n) Multiply the instance by a power of 2.sqrt()Square root.Compute this - a.doubletaylor(double... delta) Evaluate Taylor expansion of a sparse gradient.Convert radians to degrees, with error of less than 0.5 ULPConvert degrees to radians, with error of less than 0.5 ULPwithValue(double v) Create a new object with new value (zeroth-order derivative, as passed as input) and same derivatives of order one and above.Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.hipparchus.CalculusFieldElement
ceil, floor, isFinite, isInfinite, isNaN, norm, rint, round, sign, ulpMethods inherited from interface org.hipparchus.analysis.differentiation.Derivative
add, getExponent, getReal, pow, subtractMethods inherited from interface org.hipparchus.analysis.differentiation.Derivative1
acos, acosh, asin, asinh, atan, atanh, cbrt, cos, cosh, exp, expm1, getOrder, log, log10, log1p, reciprocal, rootN, sin, sinCos, sinh, sinhCosh, square, tan, tanhMethods inherited from interface org.hipparchus.FieldElement
isZero
-
Method Details
-
getFreeParameters
public int getFreeParameters()Get the number of free parameters.- Specified by:
getFreeParametersin interfaceDifferentialAlgebra- Returns:
- number of free parameters
-
getPartialDerivative
Get a partial derivative.- Specified by:
getPartialDerivativein interfaceDerivative<SparseGradient>- Parameters:
orders- derivation orders with respect to each variable (if all orders are 0, the value is returned)- Returns:
- partial derivative
- Throws:
MathIllegalArgumentException- if the numbers of variables does not match the instanceMathIllegalArgumentException- if sum of derivation orders is larger than the instance limits- See Also:
-
newInstance
Create an instance corresponding to a constant real value.- Specified by:
newInstancein interfaceCalculusFieldElement<SparseGradient>- Parameters:
v- constant real value- Returns:
- instance corresponding to a constant real value
-
withValue
Create a new object with new value (zeroth-order derivative, as passed as input) and same derivatives of order one and above.This default implementation is there so that no API gets broken by the next release, which is not a major one. Custom inheritors should probably overwrite it.
- Specified by:
withValuein interfaceDerivative<SparseGradient>- Parameters:
v- zeroth-order derivative of new represented function- Returns:
- new object with changed value
-
createConstant
Factory method creating a constant.- Parameters:
value- value of the constant- Returns:
- a new instance
-
createVariable
Factory method creating an independent variable.- Parameters:
idx- index of the variablevalue- value of the variable- Returns:
- a new instance
-
getDerivative
public double getDerivative(int index) Get the derivative with respect to a particular index variable.- Parameters:
index- index to differentiate with.- Returns:
- derivative with respect to a particular index variable
-
getAddendum
Get the addendum to the real value of the number.The addendum is considered to be the part that when added back to the
real partrecovers the instance. This means that whene.getReal()is finite (i.e. neither infinite nor NaN), thene.getAddendum().add(e.getReal())iseande.subtract(e.getReal())ise.getAddendum(). Beware that for non-finite numbers, these two equalities may not hold. The first equality (with the addition), always holds even for infinity and NaNs if the real part is independent of the addendum (this is the case for all derivatives types, as well as for complex and Dfp, but it is not the case for Tuple and FieldTuple). The second equality (with the subtraction), generally doesn't hold for non-finite numbers, because the subtraction generates NaNs.- Specified by:
getAddendumin interfaceCalculusFieldElement<SparseGradient>- Returns:
- real value
-
getValue
public double getValue()Get the value of the function.- Specified by:
getValuein interfaceDerivative<SparseGradient>- Returns:
- value of the function.
-
add
Compute this + a.- Specified by:
addin interfaceFieldElement<SparseGradient>- Parameters:
a- element to add- Returns:
- a new element representing this + a
-
addInPlace
Add in place.This method is designed to be faster when used multiple times in a loop.
The instance is changed here, in order to not change the instance the
add(SparseGradient)method should be used.- Parameters:
a- instance to add
-
subtract
Compute this - a.- Specified by:
subtractin interfaceCalculusFieldElement<SparseGradient>- Specified by:
subtractin interfaceFieldElement<SparseGradient>- Parameters:
a- element to subtract- Returns:
- a new element representing this - a
-
multiply
Compute this × a.- Specified by:
multiplyin interfaceFieldElement<SparseGradient>- Parameters:
a- element to multiply- Returns:
- a new element representing this × a
-
multiplyInPlace
Multiply in place.This method is designed to be faster when used multiple times in a loop.
The instance is changed here, in order to not change the instance the
add(SparseGradient)method should be used.- Parameters:
a- instance to multiply
-
multiply
'×' operator.- Specified by:
multiplyin interfaceCalculusFieldElement<SparseGradient>- Parameters:
c- right hand side parameter of the operator- Returns:
- this×a
-
multiply
Compute n × this. Multiplication by an integer number is defined as the following sum \[ n \times \mathrm{this} = \sum_{i=1}^n \mathrm{this} \]- Specified by:
multiplyin interfaceCalculusFieldElement<SparseGradient>- Specified by:
multiplyin interfaceFieldElement<SparseGradient>- Parameters:
n- Number of timesthismust be added to itself.- Returns:
- A new element representing n × this.
-
divide
Compute this ÷ a.- Specified by:
dividein interfaceCalculusFieldElement<SparseGradient>- Specified by:
dividein interfaceFieldElement<SparseGradient>- Parameters:
a- element to divide by- Returns:
- a new element representing this ÷ a
-
divide
'÷' operator.- Specified by:
dividein interfaceCalculusFieldElement<SparseGradient>- Parameters:
c- right hand side parameter of the operator- Returns:
- this÷a
-
negate
Returns the additive inverse ofthiselement.- Specified by:
negatein interfaceFieldElement<SparseGradient>- Returns:
- the opposite of
this.
-
getField
Get theFieldto which the instance belongs.- Specified by:
getFieldin interfaceFieldElement<SparseGradient>- Returns:
Fieldto which the instance belongs
-
remainder
IEEE remainder operator.- Specified by:
remainderin interfaceCalculusFieldElement<SparseGradient>- Specified by:
remainderin interfaceDerivative<SparseGradient>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
remainder
IEEE remainder operator.- Specified by:
remainderin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
abs
absolute value.- Specified by:
absin interfaceCalculusFieldElement<SparseGradient>- Returns:
- abs(this)
-
copySign
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Specified by:
copySignin interfaceCalculusFieldElement<SparseGradient>- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
copySign
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Specified by:
copySignin interfaceCalculusFieldElement<SparseGradient>- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
scalb
Multiply the instance by a power of 2.- Specified by:
scalbin interfaceCalculusFieldElement<SparseGradient>- Parameters:
n- power of 2- Returns:
- this × 2n
-
hypot
Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Specified by:
hypotin interfaceCalculusFieldElement<SparseGradient>- Parameters:
y- a value- Returns:
- sqrt(this2 +y2)
-
hypot
Returns the hypotenuse of a triangle with sidesxandy- sqrt(x2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Parameters:
x- a valuey- a value- Returns:
- sqrt(x2 +y2)
-
sqrt
Square root.- Specified by:
sqrtin interfaceCalculusFieldElement<SparseGradient>- Specified by:
sqrtin interfaceDerivative1<SparseGradient>- Returns:
- square root of the instance
-
pow
Power operation.- Specified by:
powin interfaceCalculusFieldElement<SparseGradient>- Parameters:
p- power to apply- Returns:
- thisp
-
pow
Integer power operation.- Specified by:
powin interfaceCalculusFieldElement<SparseGradient>- Parameters:
n- power to apply- Returns:
- thisn
-
pow
Compute ax where a is a double and x aSparseGradient- Parameters:
a- number to exponentiatex- power to apply- Returns:
- ax
-
atan2
Two arguments arc tangent operation.Beware of the order or arguments! As this is based on a two-arguments functions, in order to be consistent with arguments order, the instance is the first argument and the single provided argument is the second argument. In order to be consistent with programming languages
atan2, this method computesatan2(this, x), i.e. the instance represents theyargument and thexargument is the one passed as a single argument. This may seem confusing especially for users of Wolfram alpha, as this site is not consistent with programming languagesatan2two-arguments arc tangent and putsxas its first argument.- Specified by:
atan2in interfaceCalculusFieldElement<SparseGradient>- Parameters:
x- second argument of the arc tangent- Returns:
- atan2(this, x)
-
atan2
Two arguments arc tangent operation.- Parameters:
y- first argument of the arc tangentx- second argument of the arc tangent- Returns:
- atan2(y, x)
-
toDegrees
Convert radians to degrees, with error of less than 0.5 ULP- Specified by:
toDegreesin interfaceCalculusFieldElement<SparseGradient>- Returns:
- instance converted into degrees
-
toRadians
Convert degrees to radians, with error of less than 0.5 ULP- Specified by:
toRadiansin interfaceCalculusFieldElement<SparseGradient>- Returns:
- instance converted into radians
-
taylor
public double taylor(double... delta) Evaluate Taylor expansion of a sparse gradient.- Parameters:
delta- parameters offsets (Δx, Δy, ...)- Returns:
- value of the Taylor expansion at x + Δx, y + Δy, ...
-
compose
Compute composition of the instance by a univariate function.- Specified by:
composein interfaceDerivative<SparseGradient>- Parameters:
f- array of value and derivatives of the function at the current point (i.e. [f(getValue()), f'(getValue()), f''(getValue())...]).- Returns:
- f(this)
- Throws:
MathIllegalArgumentException- if the number of elements in the array is not equal to 2 (i.e. value and first derivative)
-
compose
Compute composition of the instance by a univariate function differentiable at order 1.- Specified by:
composein interfaceDerivative1<SparseGradient>- Parameters:
f0- value of functionf1- first-order derivative- Returns:
- f(this)
-
linearCombination
public SparseGradient linearCombination(SparseGradient[] a, SparseGradient[] b) throws MathIllegalArgumentException Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.- Throws:
MathIllegalArgumentException- if arrays dimensions don't match
-
linearCombination
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.
-
linearCombination
public SparseGradient linearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2) Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
-
linearCombination
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
-
linearCombination
public SparseGradient linearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2, SparseGradient a3, SparseGradient b3) Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
-
linearCombination
public SparseGradient linearCombination(double a1, SparseGradient b1, double a2, SparseGradient b2, double a3, SparseGradient b3) Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
-
linearCombination
public SparseGradient linearCombination(SparseGradient a1, SparseGradient b1, SparseGradient a2, SparseGradient b2, SparseGradient a3, SparseGradient b3, SparseGradient a4, SparseGradient b4) Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
-
linearCombination
public SparseGradient linearCombination(double a1, SparseGradient b1, double a2, SparseGradient b2, double a3, SparseGradient b3, double a4, SparseGradient b4) Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<SparseGradient>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
-
getPi
Get the Archimedes constant π.Archimedes constant is the ratio of a circle's circumference to its diameter.
- Specified by:
getPiin interfaceCalculusFieldElement<SparseGradient>- Returns:
- Archimedes constant π
-
equals
Test for the equality of two sparse gradients.Sparse gradients are considered equal if they have the same value and the same derivatives.
-
hashCode
public int hashCode()Get a hashCode for the derivative structure.
-