Class FieldPolynomialFunctionLagrangeForm<T extends CalculusFieldElement<T>>
- java.lang.Object
-
- org.hipparchus.analysis.polynomials.FieldPolynomialFunctionLagrangeForm<T>
-
- Type Parameters:
T
- type of the field elements
- All Implemented Interfaces:
CalculusFieldUnivariateFunction<T>
public class FieldPolynomialFunctionLagrangeForm<T extends CalculusFieldElement<T>> extends Object implements CalculusFieldUnivariateFunction<T>
Implements the representation of a real polynomial function in Lagrange Form. For reference, see Introduction to Numerical Analysis, ISBN 038795452X, chapter 2.The approximated function should be smooth enough for Lagrange polynomial to work well. Otherwise, consider using splines instead.
- Since:
- 4.0
- See Also:
PolynomialFunctionLagrangeForm
-
-
Constructor Summary
Constructors Constructor Description FieldPolynomialFunctionLagrangeForm(T[] x, T[] y)
Construct a Lagrange polynomial with the given abscissas and function values.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description protected void
computeCoefficients()
Calculate the coefficients of Lagrange polynomial from the interpolation data.int
degree()
Returns the degree of the polynomial.T[]
getCoefficients()
Returns a copy of the coefficients array.T[]
getInterpolatingPoints()
Returns a copy of the interpolating points array.T[]
getInterpolatingValues()
Returns a copy of the interpolating values array.T
value(T z)
Calculate the function value at the given point.
-
-
-
Constructor Detail
-
FieldPolynomialFunctionLagrangeForm
public FieldPolynomialFunctionLagrangeForm(T[] x, T[] y) throws MathIllegalArgumentException
Construct a Lagrange polynomial with the given abscissas and function values. The order of interpolating points is important.The constructor makes copy of the input arrays and assigns them.
- Parameters:
x
- interpolating pointsy
- function values at interpolating points- Throws:
MathIllegalArgumentException
- if the array lengths are different.MathIllegalArgumentException
- if the number of points is less than 2.MathIllegalArgumentException
- if two abscissae have the same value.MathIllegalArgumentException
- if the abscissae are not sorted.
-
-
Method Detail
-
value
public T value(T z)
Calculate the function value at the given point.- Specified by:
value
in interfaceCalculusFieldUnivariateFunction<T extends CalculusFieldElement<T>>
- Parameters:
z
- Point at which the function value is to be computed.- Returns:
- the function value.
- Throws:
MathIllegalArgumentException
- ifx
andy
have different lengths.MathIllegalArgumentException
- ifx
is not sorted in strictly increasing order.MathIllegalArgumentException
- if the size ofx
is less than 2.
-
degree
public int degree()
Returns the degree of the polynomial.- Returns:
- the degree of the polynomial
-
getInterpolatingPoints
public T[] getInterpolatingPoints()
Returns a copy of the interpolating points array.Changes made to the returned copy will not affect the polynomial.
- Returns:
- a fresh copy of the interpolating points array
-
getInterpolatingValues
public T[] getInterpolatingValues()
Returns a copy of the interpolating values array.Changes made to the returned copy will not affect the polynomial.
- Returns:
- a fresh copy of the interpolating values array
-
getCoefficients
public T[] getCoefficients()
Returns a copy of the coefficients array.Changes made to the returned copy will not affect the polynomial.
Note that coefficients computation can be ill-conditioned. Use with caution and only when it is necessary.
- Returns:
- a fresh copy of the coefficients array
-
computeCoefficients
protected void computeCoefficients()
Calculate the coefficients of Lagrange polynomial from the interpolation data. It takes O(n^2) time. Note that this computation can be ill-conditioned: Use with caution and only when it is necessary.
-
-