Package org.hipparchus.util
Class FieldTuple<T extends CalculusFieldElement<T>>
java.lang.Object
org.hipparchus.util.FieldTuple<T>
- Type Parameters:
T- the type of the field elements
- All Implemented Interfaces:
CalculusFieldElement<FieldTuple<T>>,FieldElement<FieldTuple<T>>
public class FieldTuple<T extends CalculusFieldElement<T>>
extends Object
implements CalculusFieldElement<FieldTuple<T>>
This class allows to perform the same computation of all components of a Tuple at once.
- Since:
- 1.2
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionabs()absolute value.acos()Arc cosine operation.acosh()Inverse hyperbolic cosine operation.add(double a) '+' operator.add(FieldTuple<T> a) Compute this + a.asin()Arc sine operation.asinh()Inverse hyperbolic sine operation.atan()Arc tangent operation.atan2(FieldTuple<T> x) Two arguments arc tangent operation.atanh()Inverse hyperbolic tangent operation.cbrt()Cubic root.ceil()Get the smallest whole number larger than instance.copySign(double sign) Returns the instance with the sign of the argument.copySign(FieldTuple<T> sign) Returns the instance with the sign of the argument.cos()Cosine operation.cosh()Hyperbolic cosine operation.divide(double a) '÷' operator.divide(FieldTuple<T> a) Compute this ÷ a.booleanexp()Exponential.expm1()Exponential minus 1.floor()Get the largest whole number smaller than instance.getComponent(int index) Get one component of the tuple.T[]Get all components of the tuple.intGet the dimension of the tuple.Field<FieldTuple<T>>getField()Get theFieldto which the instance belongs.getPi()Get the Archimedes constant π.doublegetReal()Get the real value of the number.inthashCode()hypot(FieldTuple<T> y) Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.linearCombination(double[] a, FieldTuple<T>[] b) Compute a linear combination.linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2) Compute a linear combination.linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2, double a3, FieldTuple<T> b3) Compute a linear combination.linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2, double a3, FieldTuple<T> b3, double a4, FieldTuple<T> b4) Compute a linear combination.linearCombination(FieldTuple<T>[] a, FieldTuple<T>[] b) Compute a linear combination.linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2) Compute a linear combination.linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2, FieldTuple<T> a3, FieldTuple<T> b3) Compute a linear combination.linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2, FieldTuple<T> a3, FieldTuple<T> b3, FieldTuple<T> a4, FieldTuple<T> b4) Compute a linear combination.log()Natural logarithm.log10()Base 10 logarithm.log1p()Shifted natural logarithm.multiply(double a) '×' operator.multiply(int n) Compute n × this.multiply(FieldTuple<T> a) Compute this × a.negate()Returns the additive inverse ofthiselement.newInstance(double value) Create an instance corresponding to a constant real value.pow(double p) Power operation.pow(int n) Integer power operation.pow(FieldTuple<T> e) Power operation.Returns the multiplicative inverse ofthiselement.remainder(double a) IEEE remainder operator.remainder(FieldTuple<T> a) IEEE remainder operator.rint()Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.rootN(int n) Nth root.scalb(int n) Multiply the instance by a power of 2.sign()Compute the sign of the instance.sin()Sine operation.sinCos()Combined Sine and Cosine operation.sinh()Hyperbolic sine operation.sinhCosh()Combined hyperbolic sine and cosine operation.sqrt()Square root.square()Compute this × this.subtract(double a) '-' operator.subtract(FieldTuple<T> a) Compute this - a.tan()Tangent operation.tanh()Hyperbolic tangent operation.Convert radians to degrees, with error of less than 0.5 ULPConvert degrees to radians, with error of less than 0.5 ULPulp()Compute least significant bit (Unit in Last Position) for a number.Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.hipparchus.CalculusFieldElement
getExponent, isFinite, isInfinite, isNaN, norm, roundMethods inherited from interface org.hipparchus.FieldElement
isZero
-
Constructor Details
-
FieldTuple
Creates a new instance from its components.- Parameters:
x- components of the tuple
-
-
Method Details
-
newInstance
Create an instance corresponding to a constant real value.- Specified by:
newInstancein interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
value- constant real value- Returns:
- instance corresponding to a constant real value
-
getDimension
public int getDimension()Get the dimension of the tuple.- Returns:
- dimension of the tuple
-
getComponent
Get one component of the tuple.- Parameters:
index- index of the component, between 0 andgetDimension()- 1- Returns:
- value of the component
-
getComponents
Get all components of the tuple.- Returns:
- all components
-
getField
Get theFieldto which the instance belongs.- Specified by:
getFieldin interfaceFieldElement<T extends CalculusFieldElement<T>>- Returns:
Fieldto which the instance belongs
-
add
Compute this + a.- Specified by:
addin interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- element to add- Returns:
- a new element representing this + a
-
subtract
Compute this - a.- Specified by:
subtractin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Specified by:
subtractin interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- element to subtract- Returns:
- a new element representing this - a
-
negate
Returns the additive inverse ofthiselement.- Specified by:
negatein interfaceFieldElement<T extends CalculusFieldElement<T>>- Returns:
- the opposite of
this.
-
multiply
Compute this × a.- Specified by:
multiplyin interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- element to multiply- Returns:
- a new element representing this × a
-
multiply
Compute n × this. Multiplication by an integer number is defined as the following sum \[ n \times \mathrm{this} = \sum_{i=1}^n \mathrm{this} \]- Specified by:
multiplyin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Specified by:
multiplyin interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
n- Number of timesthismust be added to itself.- Returns:
- A new element representing n × this.
-
divide
Compute this ÷ a.- Specified by:
dividein interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Specified by:
dividein interfaceFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- element to divide by- Returns:
- a new element representing this ÷ a
-
reciprocal
Returns the multiplicative inverse ofthiselement.- Specified by:
reciprocalin interfaceFieldElement<T extends CalculusFieldElement<T>>- Returns:
- the inverse of
this.
-
equals
-
hashCode
public int hashCode() -
getReal
public double getReal()Get the real value of the number.- Specified by:
getRealin interfaceFieldElement<T extends CalculusFieldElement<T>>- Returns:
- real value
-
add
'+' operator.- Specified by:
addin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this+a
-
subtract
'-' operator.- Specified by:
subtractin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this-a
-
multiply
'×' operator.- Specified by:
multiplyin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this×a
-
square
Compute this × this.- Specified by:
squarein interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- a new element representing this × this
-
divide
'÷' operator.- Specified by:
dividein interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this÷a
-
remainder
IEEE remainder operator.- Specified by:
remainderin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
remainder
IEEE remainder operator.- Specified by:
remainderin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
abs
absolute value.- Specified by:
absin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- abs(this)
-
ceil
Get the smallest whole number larger than instance.- Specified by:
ceilin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- ceil(this)
-
floor
Get the largest whole number smaller than instance.- Specified by:
floorin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- floor(this)
-
rint
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.- Specified by:
rintin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- a double number r such that r is an integer r - 0.5 ≤ this ≤ r + 0.5
-
sign
Compute the sign of the instance. The sign is -1 for negative numbers, +1 for positive numbers and 0 otherwise, for Complex number, it is extended on the unit circle (equivalent to z/|z|, with special handling for 0 and NaN)- Specified by:
signin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
-
copySign
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Specified by:
copySignin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
copySign
Returns the instance with the sign of the argument. A NaNsignargument is treated as positive.- Specified by:
copySignin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
sign- the sign for the returned value- Returns:
- the instance with the same sign as the
signargument
-
scalb
Multiply the instance by a power of 2.- Specified by:
scalbin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
n- power of 2- Returns:
- this × 2n
-
ulp
Compute least significant bit (Unit in Last Position) for a number.- Specified by:
ulpin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- ulp(this)
-
hypot
Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Specified by:
hypotin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
y- a value- Returns:
- sqrt(this2 +y2)
-
sqrt
Square root.- Specified by:
sqrtin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- square root of the instance
-
cbrt
Cubic root.- Specified by:
cbrtin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- cubic root of the instance
-
rootN
Nth root.- Specified by:
rootNin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
n- order of the root- Returns:
- nth root of the instance
-
pow
Power operation.- Specified by:
powin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
p- power to apply- Returns:
- thisp
-
pow
Integer power operation.- Specified by:
powin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
n- power to apply- Returns:
- thisn
-
pow
Power operation.- Specified by:
powin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
e- exponent- Returns:
- thise
-
exp
Exponential.- Specified by:
expin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- exponential of the instance
-
expm1
Exponential minus 1.- Specified by:
expm1in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- exponential minus one of the instance
-
log
Natural logarithm.- Specified by:
login interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- logarithm of the instance
-
log1p
Shifted natural logarithm.- Specified by:
log1pin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- logarithm of one plus the instance
-
log10
Base 10 logarithm.- Specified by:
log10in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- base 10 logarithm of the instance
-
cos
Cosine operation.- Specified by:
cosin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- cos(this)
-
sin
Sine operation.- Specified by:
sinin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- sin(this)
-
sinCos
Combined Sine and Cosine operation.- Specified by:
sinCosin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- [sin(this), cos(this)]
-
tan
Tangent operation.- Specified by:
tanin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- tan(this)
-
acos
Arc cosine operation.- Specified by:
acosin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- acos(this)
-
asin
Arc sine operation.- Specified by:
asinin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- asin(this)
-
atan
Arc tangent operation.- Specified by:
atanin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- atan(this)
-
atan2
Two arguments arc tangent operation.Beware of the order or arguments! As this is based on a two-arguments functions, in order to be consistent with arguments order, the instance is the first argument and the single provided argument is the second argument. In order to be consistent with programming languages
atan2, this method computesatan2(this, x), i.e. the instance represents theyargument and thexargument is the one passed as a single argument. This may seem confusing especially for users of Wolfram alpha, as this site is not consistent with programming languagesatan2two-arguments arc tangent and putsxas its first argument.- Specified by:
atan2in interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
x- second argument of the arc tangent- Returns:
- atan2(this, x)
-
cosh
Hyperbolic cosine operation.- Specified by:
coshin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- cosh(this)
-
sinh
Hyperbolic sine operation.- Specified by:
sinhin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- sinh(this)
-
sinhCosh
Combined hyperbolic sine and cosine operation.- Specified by:
sinhCoshin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- [sinh(this), cosh(this)]
-
tanh
Hyperbolic tangent operation.- Specified by:
tanhin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- tanh(this)
-
acosh
Inverse hyperbolic cosine operation.- Specified by:
acoshin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- acosh(this)
-
asinh
Inverse hyperbolic sine operation.- Specified by:
asinhin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- asin(this)
-
atanh
Inverse hyperbolic tangent operation.- Specified by:
atanhin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- atanh(this)
-
toDegrees
Convert radians to degrees, with error of less than 0.5 ULP- Specified by:
toDegreesin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- instance converted into degrees
-
toRadians
Convert degrees to radians, with error of less than 0.5 ULP- Specified by:
toRadiansin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- instance converted into radians
-
linearCombination
public FieldTuple<T> linearCombination(FieldTuple<T>[] a, FieldTuple<T>[] b) throws MathIllegalArgumentException Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.- Throws:
MathIllegalArgumentException- if arrays dimensions don't match
-
linearCombination
public FieldTuple<T> linearCombination(double[] a, FieldTuple<T>[] b) throws MathIllegalArgumentException Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a- Factors.b- Factors.- Returns:
Σi ai bi.- Throws:
MathIllegalArgumentException- if arrays dimensions don't match
-
linearCombination
public FieldTuple<T> linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2) Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
-
linearCombination
Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
-
linearCombination
public FieldTuple<T> linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2, FieldTuple<T> a3, FieldTuple<T> b3) Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
-
linearCombination
public FieldTuple<T> linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2, double a3, FieldTuple<T> b3) Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
-
linearCombination
public FieldTuple<T> linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2, FieldTuple<T> a3, FieldTuple<T> b3, FieldTuple<T> a4, FieldTuple<T> b4) Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
-
linearCombination
public FieldTuple<T> linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2, double a3, FieldTuple<T> b3, double a4, FieldTuple<T> b4) Compute a linear combination.- Specified by:
linearCombinationin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Parameters:
a1- first factor of the first termb1- second factor of the first terma2- first factor of the second termb2- second factor of the second terma3- first factor of the third termb3- second factor of the third terma4- first factor of the fourth termb4- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
-
getPi
Get the Archimedes constant π.Archimedes constant is the ratio of a circle's circumference to its diameter.
- Specified by:
getPiin interfaceCalculusFieldElement<T extends CalculusFieldElement<T>>- Returns:
- Archimedes constant π
-