Class Binary64
- All Implemented Interfaces:
Serializable
,Comparable<Binary64>
,CalculusFieldElement<Binary64>
,FieldElement<Binary64>
double
value in an object. It is similar to the
standard class Double
, while also implementing the
CalculusFieldElement
interface.- See Also:
-
Field Summary
Modifier and TypeFieldDescriptionstatic final Binary64
The constant value ofDouble.NaN
as aBinary64
.static final Binary64
The constant value ofDouble.NEGATIVE_INFINITY
as aBinary64
.static final Binary64
The constant value of1d
as aBinary64
.static final Binary64
The constant value of π as aBinary64
.static final Binary64
The constant value ofDouble.POSITIVE_INFINITY
as aBinary64
.static final Binary64
The constant value of0d
as aBinary64
. -
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionabs()
absolute value.acos()
Arc cosine operation.acosh()
Inverse hyperbolic cosine operation.add
(double a) '+' operator.Compute this + a.asin()
Arc sine operation.asinh()
Inverse hyperbolic sine operation.atan()
Arc tangent operation.Two arguments arc tangent operation.atanh()
Inverse hyperbolic tangent operation.byte
The current implementation performs casting to abyte
.cbrt()
Cubic root.ceil()
Get the smallest whole number larger than instance.int
The current implementation returns the same value asnew Double(this.doubleValue()).compareTo(new Double(o.doubleValue()))
copySign
(double sign) Returns the instance with the sign of the argument.Returns the instance with the sign of the argument.cos()
Cosine operation.cosh()
Hyperbolic cosine operation.divide
(double a) '÷' operator.Compute this ÷ a.double
boolean
exp()
Exponential.expm1()
Exponential minus 1.float
The current implementation performs casting to afloat
.floor()
Get the largest whole number smaller than instance.getField()
Get theField
to which the instance belongs.getPi()
Get the Archimedes constant π.double
getReal()
Get the real value of the number.int
hashCode()
The current implementation returns the same value asnew Double(this.doubleValue()).hashCode()
Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.int
intValue()
The current implementation performs casting to aint
.boolean
Returnstrue
ifthis
double precision number is infinite (Double.POSITIVE_INFINITY
orDouble.NEGATIVE_INFINITY
).boolean
isNaN()
Returnstrue
ifthis
double precision number is Not-a-Number (NaN
), false otherwise.boolean
isZero()
Check if an element is semantically equal to zero.linearCombination
(double[] a, Binary64[] b) Compute a linear combination.linearCombination
(double a1, Binary64 b1, double a2, Binary64 b2) Compute a linear combination.linearCombination
(double a1, Binary64 b1, double a2, Binary64 b2, double a3, Binary64 b3) Compute a linear combination.linearCombination
(double a1, Binary64 b1, double a2, Binary64 b2, double a3, Binary64 b3, double a4, Binary64 b4) Compute a linear combination.linearCombination
(Binary64[] a, Binary64[] b) Compute a linear combination.linearCombination
(Binary64 a1, Binary64 b1, Binary64 a2, Binary64 b2) Compute a linear combination.Compute a linear combination.linearCombination
(Binary64 a1, Binary64 b1, Binary64 a2, Binary64 b2, Binary64 a3, Binary64 b3, Binary64 a4, Binary64 b4) Compute a linear combination.log()
Natural logarithm.log10()
Base 10 logarithm.log1p()
Shifted natural logarithm.long
The current implementation performs casting to along
.multiply
(double a) '×' operator.multiply
(int n) Compute n × this.Compute this × a.negate()
Returns the additive inverse ofthis
element.newInstance
(double v) Create an instance corresponding to a constant real value.pow
(double p) Power operation.pow
(int n) Integer power operation.Power operation.Returns the multiplicative inverse ofthis
element.remainder
(double a) IEEE remainder operator.IEEE remainder operator.rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.rootN
(int n) Nth root.scalb
(int n) Multiply the instance by a power of 2.short
The current implementation performs casting to ashort
.sign()
Compute the sign of the instance.sin()
Sine operation.sinCos()
Combined Sine and Cosine operation.sinh()
Hyperbolic sine operation.sinhCosh()
Combined hyperbolic sine and cosine operation.sqrt()
Square root.square()
Compute this × this.subtract
(double a) '-' operator.Compute this - a.tan()
Tangent operation.tanh()
Hyperbolic tangent operation.Convert radians to degrees, with error of less than 0.5 ULPConvert degrees to radians, with error of less than 0.5 ULPtoString()
The returnedString
is equal toDouble.toString(this.doubleValue())
ulp()
Compute least significant bit (Unit in Last Position) for a number.Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
Methods inherited from interface org.hipparchus.CalculusFieldElement
getExponent, isFinite, norm, round
-
Field Details
-
ZERO
The constant value of0d
as aBinary64
. -
ONE
The constant value of1d
as aBinary64
. -
PI
The constant value of π as aBinary64
. -
NEGATIVE_INFINITY
The constant value ofDouble.NEGATIVE_INFINITY
as aBinary64
. -
POSITIVE_INFINITY
The constant value ofDouble.POSITIVE_INFINITY
as aBinary64
. -
NAN
The constant value ofDouble.NaN
as aBinary64
.
-
-
Constructor Details
-
Binary64
public Binary64(double x) Creates a new instance of this class.- Parameters:
x
- the primitivedouble
value of the object to be created
-
-
Method Details
-
newInstance
Create an instance corresponding to a constant real value.- Specified by:
newInstance
in interfaceCalculusFieldElement<Binary64>
- Parameters:
v
- constant real value- Returns:
- instance corresponding to a constant real value
-
getField
Get theField
to which the instance belongs.- Specified by:
getField
in interfaceFieldElement<Binary64>
- Returns:
Field
to which the instance belongs
-
add
Compute this + a. The current implementation strictly enforcesthis.add(a).equals(new Binary64(this.doubleValue() + a.doubleValue()))
.- Specified by:
add
in interfaceFieldElement<Binary64>
- Parameters:
a
- element to add- Returns:
- a new element representing this + a
-
subtract
Compute this - a. The current implementation strictly enforcesthis.subtract(a).equals(new Binary64(this.doubleValue() - a.doubleValue()))
.- Specified by:
subtract
in interfaceCalculusFieldElement<Binary64>
- Specified by:
subtract
in interfaceFieldElement<Binary64>
- Parameters:
a
- element to subtract- Returns:
- a new element representing this - a
-
negate
Returns the additive inverse ofthis
element. The current implementation strictly enforcesthis.negate().equals(new Binary64(-this.doubleValue()))
.- Specified by:
negate
in interfaceFieldElement<Binary64>
- Returns:
- the opposite of
this
.
-
square
Description copied from interface:CalculusFieldElement
Compute this × this.- Specified by:
square
in interfaceCalculusFieldElement<Binary64>
- Returns:
- a new element representing this × this
-
multiply
Compute this × a. The current implementation strictly enforcesthis.multiply(a).equals(new Binary64(this.doubleValue() * a.doubleValue()))
.- Specified by:
multiply
in interfaceFieldElement<Binary64>
- Parameters:
a
- element to multiply- Returns:
- a new element representing this × a
-
multiply
Compute n × this. Multiplication by an integer number is defined as the following sum \[ n \times \mathrm{this} = \sum_{i=1}^n \mathrm{this} \] The current implementation strictly enforcesthis.multiply(n).equals(new Binary64(n * this.doubleValue()))
.- Specified by:
multiply
in interfaceCalculusFieldElement<Binary64>
- Specified by:
multiply
in interfaceFieldElement<Binary64>
- Parameters:
n
- Number of timesthis
must be added to itself.- Returns:
- A new element representing n × this.
-
divide
Compute this ÷ a. The current implementation strictly enforcesthis.divide(a).equals(new Binary64(this.doubleValue() / a.doubleValue()))
.- Specified by:
divide
in interfaceCalculusFieldElement<Binary64>
- Specified by:
divide
in interfaceFieldElement<Binary64>
- Parameters:
a
- element to divide by- Returns:
- a new element representing this ÷ a
-
reciprocal
Returns the multiplicative inverse ofthis
element. The current implementation strictly enforcesthis.reciprocal().equals(new Binary64(1.0 / this.doubleValue()))
.- Specified by:
reciprocal
in interfaceFieldElement<Binary64>
- Returns:
- the inverse of
this
.
-
byteValue
public byte byteValue()The current implementation performs casting to abyte
. -
shortValue
public short shortValue()The current implementation performs casting to ashort
.- Overrides:
shortValue
in classNumber
-
intValue
public int intValue()The current implementation performs casting to aint
. -
longValue
public long longValue()The current implementation performs casting to along
. -
floatValue
public float floatValue()The current implementation performs casting to afloat
.- Specified by:
floatValue
in classNumber
-
doubleValue
public double doubleValue()- Specified by:
doubleValue
in classNumber
-
compareTo
The current implementation returns the same value asnew Double(this.doubleValue()).compareTo(new Double(o.doubleValue()))
- Specified by:
compareTo
in interfaceComparable<Binary64>
- See Also:
-
equals
-
isZero
public boolean isZero()Check if an element is semantically equal to zero.The default implementation simply calls
equals(getField().getZero())
. However, this may need to be overridden in some cases as due to compatibility withhashCode()
some classes implementsequals(Object)
in such a way that -0.0 and +0.0 are different, which may be a problem. It prevents for example identifying a diagonal element is zero and should be avoided when doing partial pivoting in LU decomposition.This implementation considers +0.0 and -0.0 to be equal.
- Specified by:
isZero
in interfaceFieldElement<Binary64>
- Returns:
- true if the element is semantically equal to zero
- Since:
- 1.8
-
hashCode
public int hashCode()The current implementation returns the same value asnew Double(this.doubleValue()).hashCode()
-
toString
The returnedString
is equal toDouble.toString(this.doubleValue())
-
isInfinite
public boolean isInfinite()Returnstrue
ifthis
double precision number is infinite (Double.POSITIVE_INFINITY
orDouble.NEGATIVE_INFINITY
).- Specified by:
isInfinite
in interfaceCalculusFieldElement<Binary64>
- Returns:
true
ifthis
number is infinite
-
isNaN
public boolean isNaN()Returnstrue
ifthis
double precision number is Not-a-Number (NaN
), false otherwise.- Specified by:
isNaN
in interfaceCalculusFieldElement<Binary64>
- Returns:
true
ifthis
isNaN
-
getReal
public double getReal()Get the real value of the number.- Specified by:
getReal
in interfaceFieldElement<Binary64>
- Returns:
- real value
-
add
'+' operator.- Specified by:
add
in interfaceCalculusFieldElement<Binary64>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this+a
-
subtract
'-' operator.- Specified by:
subtract
in interfaceCalculusFieldElement<Binary64>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this-a
-
multiply
'×' operator.- Specified by:
multiply
in interfaceCalculusFieldElement<Binary64>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this×a
-
divide
'÷' operator.- Specified by:
divide
in interfaceCalculusFieldElement<Binary64>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this÷a
-
remainder
IEEE remainder operator.- Specified by:
remainder
in interfaceCalculusFieldElement<Binary64>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
remainder
IEEE remainder operator.- Specified by:
remainder
in interfaceCalculusFieldElement<Binary64>
- Parameters:
a
- right hand side parameter of the operator- Returns:
- this - n × a where n is the closest integer to this/a
-
abs
absolute value.- Specified by:
abs
in interfaceCalculusFieldElement<Binary64>
- Returns:
- abs(this)
-
ceil
Get the smallest whole number larger than instance.- Specified by:
ceil
in interfaceCalculusFieldElement<Binary64>
- Returns:
- ceil(this)
-
floor
Get the largest whole number smaller than instance.- Specified by:
floor
in interfaceCalculusFieldElement<Binary64>
- Returns:
- floor(this)
-
rint
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.- Specified by:
rint
in interfaceCalculusFieldElement<Binary64>
- Returns:
- a double number r such that r is an integer r - 0.5 ≤ this ≤ r + 0.5
-
sign
Compute the sign of the instance. The sign is -1 for negative numbers, +1 for positive numbers and 0 otherwise, for Complex number, it is extended on the unit circle (equivalent to z/|z|, with special handling for 0 and NaN)- Specified by:
sign
in interfaceCalculusFieldElement<Binary64>
- Returns:
- -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
-
copySign
Returns the instance with the sign of the argument. A NaNsign
argument is treated as positive.- Specified by:
copySign
in interfaceCalculusFieldElement<Binary64>
- Parameters:
sign
- the sign for the returned value- Returns:
- the instance with the same sign as the
sign
argument
-
copySign
Returns the instance with the sign of the argument. A NaNsign
argument is treated as positive.- Specified by:
copySign
in interfaceCalculusFieldElement<Binary64>
- Parameters:
sign
- the sign for the returned value- Returns:
- the instance with the same sign as the
sign
argument
-
scalb
Multiply the instance by a power of 2.- Specified by:
scalb
in interfaceCalculusFieldElement<Binary64>
- Parameters:
n
- power of 2- Returns:
- this × 2n
-
ulp
Compute least significant bit (Unit in Last Position) for a number.- Specified by:
ulp
in interfaceCalculusFieldElement<Binary64>
- Returns:
- ulp(this)
-
hypot
Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.- If either argument is infinite, then the result is positive infinity.
- else, if either argument is NaN then the result is NaN.
- Specified by:
hypot
in interfaceCalculusFieldElement<Binary64>
- Parameters:
y
- a value- Returns:
- sqrt(this2 +y2)
-
sqrt
Square root.- Specified by:
sqrt
in interfaceCalculusFieldElement<Binary64>
- Returns:
- square root of the instance
-
cbrt
Cubic root.- Specified by:
cbrt
in interfaceCalculusFieldElement<Binary64>
- Returns:
- cubic root of the instance
-
rootN
Nth root.- Specified by:
rootN
in interfaceCalculusFieldElement<Binary64>
- Parameters:
n
- order of the root- Returns:
- nth root of the instance
-
pow
Power operation.- Specified by:
pow
in interfaceCalculusFieldElement<Binary64>
- Parameters:
p
- power to apply- Returns:
- thisp
-
pow
Integer power operation.- Specified by:
pow
in interfaceCalculusFieldElement<Binary64>
- Parameters:
n
- power to apply- Returns:
- thisn
-
pow
Power operation.- Specified by:
pow
in interfaceCalculusFieldElement<Binary64>
- Parameters:
e
- exponent- Returns:
- thise
-
exp
Exponential.- Specified by:
exp
in interfaceCalculusFieldElement<Binary64>
- Returns:
- exponential of the instance
-
expm1
Exponential minus 1.- Specified by:
expm1
in interfaceCalculusFieldElement<Binary64>
- Returns:
- exponential minus one of the instance
-
log
Natural logarithm.- Specified by:
log
in interfaceCalculusFieldElement<Binary64>
- Returns:
- logarithm of the instance
-
log1p
Shifted natural logarithm.- Specified by:
log1p
in interfaceCalculusFieldElement<Binary64>
- Returns:
- logarithm of one plus the instance
-
log10
Base 10 logarithm.- Specified by:
log10
in interfaceCalculusFieldElement<Binary64>
- Returns:
- base 10 logarithm of the instance
-
cos
Cosine operation.- Specified by:
cos
in interfaceCalculusFieldElement<Binary64>
- Returns:
- cos(this)
-
sin
Sine operation.- Specified by:
sin
in interfaceCalculusFieldElement<Binary64>
- Returns:
- sin(this)
-
sinCos
Combined Sine and Cosine operation.- Specified by:
sinCos
in interfaceCalculusFieldElement<Binary64>
- Returns:
- [sin(this), cos(this)]
-
tan
Tangent operation.- Specified by:
tan
in interfaceCalculusFieldElement<Binary64>
- Returns:
- tan(this)
-
acos
Arc cosine operation.- Specified by:
acos
in interfaceCalculusFieldElement<Binary64>
- Returns:
- acos(this)
-
asin
Arc sine operation.- Specified by:
asin
in interfaceCalculusFieldElement<Binary64>
- Returns:
- asin(this)
-
atan
Arc tangent operation.- Specified by:
atan
in interfaceCalculusFieldElement<Binary64>
- Returns:
- atan(this)
-
atan2
Two arguments arc tangent operation.Beware of the order or arguments! As this is based on a two-arguments functions, in order to be consistent with arguments order, the instance is the first argument and the single provided argument is the second argument. In order to be consistent with programming languages
atan2
, this method computesatan2(this, x)
, i.e. the instance represents they
argument and thex
argument is the one passed as a single argument. This may seem confusing especially for users of Wolfram alpha, as this site is not consistent with programming languagesatan2
two-arguments arc tangent and putsx
as its first argument.- Specified by:
atan2
in interfaceCalculusFieldElement<Binary64>
- Parameters:
x
- second argument of the arc tangent- Returns:
- atan2(this, x)
-
cosh
Hyperbolic cosine operation.- Specified by:
cosh
in interfaceCalculusFieldElement<Binary64>
- Returns:
- cosh(this)
-
sinh
Hyperbolic sine operation.- Specified by:
sinh
in interfaceCalculusFieldElement<Binary64>
- Returns:
- sinh(this)
-
sinhCosh
Combined hyperbolic sine and cosine operation.- Specified by:
sinhCosh
in interfaceCalculusFieldElement<Binary64>
- Returns:
- [sinh(this), cosh(this)]
-
tanh
Hyperbolic tangent operation.- Specified by:
tanh
in interfaceCalculusFieldElement<Binary64>
- Returns:
- tanh(this)
-
acosh
Inverse hyperbolic cosine operation.- Specified by:
acosh
in interfaceCalculusFieldElement<Binary64>
- Returns:
- acosh(this)
-
asinh
Inverse hyperbolic sine operation.- Specified by:
asinh
in interfaceCalculusFieldElement<Binary64>
- Returns:
- asin(this)
-
atanh
Inverse hyperbolic tangent operation.- Specified by:
atanh
in interfaceCalculusFieldElement<Binary64>
- Returns:
- atanh(this)
-
toDegrees
Convert radians to degrees, with error of less than 0.5 ULP- Specified by:
toDegrees
in interfaceCalculusFieldElement<Binary64>
- Returns:
- instance converted into degrees
-
toRadians
Convert degrees to radians, with error of less than 0.5 ULP- Specified by:
toRadians
in interfaceCalculusFieldElement<Binary64>
- Returns:
- instance converted into radians
-
linearCombination
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Binary64>
- Parameters:
a
- Factors.b
- Factors.- Returns:
Σi ai bi
.- Throws:
MathIllegalArgumentException
- if arrays dimensions don't match
-
linearCombination
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Binary64>
- Parameters:
a
- Factors.b
- Factors.- Returns:
Σi ai bi
.- Throws:
MathIllegalArgumentException
- if arrays dimensions don't match
-
linearCombination
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Binary64>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
-
linearCombination
Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Binary64>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second term- Returns:
- a1×b1 + a2×b2
- See Also:
-
linearCombination
public Binary64 linearCombination(Binary64 a1, Binary64 b1, Binary64 a2, Binary64 b2, Binary64 a3, Binary64 b3) Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Binary64>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
-
linearCombination
public Binary64 linearCombination(double a1, Binary64 b1, double a2, Binary64 b2, double a3, Binary64 b3) Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Binary64>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third term- Returns:
- a1×b1 + a2×b2 + a3×b3
- See Also:
-
linearCombination
public Binary64 linearCombination(Binary64 a1, Binary64 b1, Binary64 a2, Binary64 b2, Binary64 a3, Binary64 b3, Binary64 a4, Binary64 b4) Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Binary64>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
-
linearCombination
public Binary64 linearCombination(double a1, Binary64 b1, double a2, Binary64 b2, double a3, Binary64 b3, double a4, Binary64 b4) Compute a linear combination.- Specified by:
linearCombination
in interfaceCalculusFieldElement<Binary64>
- Parameters:
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth term- Returns:
- a1×b1 + a2×b2 + a3×b3 + a4×b4
- See Also:
-
getPi
Get the Archimedes constant π.Archimedes constant is the ratio of a circle's circumference to its diameter.
- Specified by:
getPi
in interfaceCalculusFieldElement<Binary64>
- Returns:
- Archimedes constant π
-