Class FieldHermiteRuleFactory<T extends CalculusFieldElement<T>>
java.lang.Object
org.hipparchus.analysis.integration.gauss.FieldAbstractRuleFactory<T>
org.hipparchus.analysis.integration.gauss.FieldHermiteRuleFactory<T>
- Type Parameters:
T
- Type of the number used to represent the points and weights of the quadrature rules.
- All Implemented Interfaces:
FieldRuleFactory<T>
public class FieldHermiteRuleFactory<T extends CalculusFieldElement<T>>
extends FieldAbstractRuleFactory<T>
Factory that creates a
Gauss-type quadrature rule using Hermite polynomials
of the first kind.
Such a quadrature rule allows the calculation of improper integrals
of a function
\(f(x) e^{-x^2}\)
Recurrence relation and weights computation follow Abramowitz and Stegun, 1964.
The coefficients of the standard Hermite polynomials grow very rapidly. In order to avoid overflows, each Hermite polynomial is normalized with respect to the underlying scalar product.
- Since:
- 2.0
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptioncomputeRule
(int numberOfPoints) Computes the rule for the given order.Methods inherited from class org.hipparchus.analysis.integration.gauss.FieldAbstractRuleFactory
enforceSymmetry, findRoots, getField, getRule
-
Constructor Details
-
FieldHermiteRuleFactory
Simple constructor- Parameters:
field
- field to which rule coefficients belong
-
-
Method Details
-
computeRule
Computes the rule for the given order.- Specified by:
computeRule
in classFieldAbstractRuleFactory<T extends CalculusFieldElement<T>>
- Parameters:
numberOfPoints
- Order of the rule to be computed.- Returns:
- the computed rule.
- Throws:
MathIllegalArgumentException
- if the elements of the pair do not have the same length.
-