Class FieldHermiteRuleFactory<T extends CalculusFieldElement<T>>

java.lang.Object
org.hipparchus.analysis.integration.gauss.FieldAbstractRuleFactory<T>
org.hipparchus.analysis.integration.gauss.FieldHermiteRuleFactory<T>
Type Parameters:
T - Type of the number used to represent the points and weights of the quadrature rules.
All Implemented Interfaces:
FieldRuleFactory<T>

public class FieldHermiteRuleFactory<T extends CalculusFieldElement<T>> extends FieldAbstractRuleFactory<T>
Factory that creates a Gauss-type quadrature rule using Hermite polynomials of the first kind. Such a quadrature rule allows the calculation of improper integrals of a function

\(f(x) e^{-x^2}\)

Recurrence relation and weights computation follow Abramowitz and Stegun, 1964.

The coefficients of the standard Hermite polynomials grow very rapidly. In order to avoid overflows, each Hermite polynomial is normalized with respect to the underlying scalar product.

Since:
2.0