Package | Description |
---|---|
org.hipparchus.optim.nonlinear.vector.leastsquares |
This package provides algorithms that minimize the residuals
between observations and model values.
|
Modifier and Type | Interface and Description |
---|---|
static interface |
LeastSquaresOptimizer.Optimum
The optimum found by the optimizer.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractEvaluation
An implementation of
LeastSquaresProblem.Evaluation that is designed for extension. |
Modifier and Type | Method and Description |
---|---|
LeastSquaresProblem.Evaluation |
LeastSquaresProblem.evaluate(RealVector point)
Evaluate the model at the specified point.
|
LeastSquaresProblem.Evaluation |
LeastSquaresAdapter.evaluate(RealVector point)
Evaluate the model at the specified point.
|
LeastSquaresProblem.Evaluation |
SequentialGaussNewtonOptimizer.getOldEvaluation()
Get the previous evaluation used by the optimizer.
|
Modifier and Type | Method and Description |
---|---|
static ConvergenceChecker<LeastSquaresProblem.Evaluation> |
LeastSquaresFactory.evaluationChecker(ConvergenceChecker<PointVectorValuePair> checker)
View a convergence checker specified for a
PointVectorValuePair as one
specified for an LeastSquaresProblem.Evaluation . |
ConvergenceChecker<LeastSquaresProblem.Evaluation> |
LeastSquaresAdapter.getConvergenceChecker()
Gets the convergence checker.
|
Modifier and Type | Method and Description |
---|---|
boolean |
EvaluationRmsChecker.converged(int iteration,
LeastSquaresProblem.Evaluation previous,
LeastSquaresProblem.Evaluation current)
Check if the optimization algorithm has converged.
|
static LeastSquaresOptimizer.Optimum |
LeastSquaresOptimizer.Optimum.of(LeastSquaresProblem.Evaluation value,
int evaluations,
int iterations)
Create a new optimum from an evaluation and the values of the counters.
|
SequentialGaussNewtonOptimizer |
SequentialGaussNewtonOptimizer.withEvaluation(LeastSquaresProblem.Evaluation previousEvaluation)
Configure the previous evaluation used by the optimizer.
|
Modifier and Type | Method and Description |
---|---|
LeastSquaresBuilder |
LeastSquaresBuilder.checker(ConvergenceChecker<LeastSquaresProblem.Evaluation> newChecker)
Configure the convergence checker.
|
static LeastSquaresProblem |
LeastSquaresFactory.create(MultivariateJacobianFunction model,
RealVector observed,
RealVector start,
ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
int maxEvaluations,
int maxIterations)
Create a
LeastSquaresProblem
from the given elements. |
static LeastSquaresProblem |
LeastSquaresFactory.create(MultivariateJacobianFunction model,
RealVector observed,
RealVector start,
RealMatrix weight,
ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
int maxEvaluations,
int maxIterations)
Create a
LeastSquaresProblem
from the given elements. |
static LeastSquaresProblem |
LeastSquaresFactory.create(MultivariateJacobianFunction model,
RealVector observed,
RealVector start,
RealMatrix weight,
ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
int maxEvaluations,
int maxIterations,
boolean lazyEvaluation,
ParameterValidator paramValidator)
Create a
LeastSquaresProblem
from the given elements. |
static LeastSquaresProblem |
LeastSquaresFactory.create(MultivariateVectorFunction model,
MultivariateMatrixFunction jacobian,
double[] observed,
double[] start,
RealMatrix weight,
ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
int maxEvaluations,
int maxIterations)
Create a
LeastSquaresProblem
from the given elements. |
Constructor and Description |
---|
SequentialGaussNewtonOptimizer(MatrixDecomposer decomposer,
boolean formNormalEquations,
LeastSquaresProblem.Evaluation evaluation)
Create a sequential Gauss Newton optimizer that uses the given matrix
decomposition algorithm to solve the normal equations.
|
Copyright © 2016-2022 CS GROUP. All rights reserved.