public class DerivativeStructure extends Object implements Derivative<DerivativeStructure>, Serializable
This class is the workhorse of the differentiation package.
This class is an implementation of the extension to Rall's numbers described in Dan Kalman's paper Doubly Recursive Multivariate Automatic Differentiation, Mathematics Magazine, vol. 75, no. 3, June 2002. Rall's numbers are an extension to the real numbers used throughout mathematical expressions; they hold the derivative together with the value of a function. Dan Kalman's derivative structures hold all partial derivatives up to any specified order, with respect to any number of free parameters. Rall's numbers therefore can be seen as derivative structures for order one derivative and one free parameter, and real numbers can be seen as derivative structures with zero order derivative and no free parameters.
DerivativeStructure instances can be used directly thanks to
 the arithmetic operators to the mathematical functions provided as
 methods by this class (+, -, *, /, %, sin, cos ...).
Implementing complex expressions by hand using these classes is
 a tedious and error-prone task but has the advantage of having no limitation
 on the derivation order despite not requiring users to compute the derivatives by
 themselves. Implementing complex expression can also be done by developing computation
 code using standard primitive double values and to use differentiators to create the DerivativeStructure-based instances. This method is simpler but may be limited in
 the accuracy and derivation orders and may be computationally intensive (this is
 typically the case for finite differences
 differentiator.
Instances of this class are guaranteed to be immutable.
DSCompiler, 
FieldDerivativeStructure, 
Serialized Form| Modifier and Type | Method and Description | 
|---|---|
DerivativeStructure | 
abs()
absolute value. 
 | 
DerivativeStructure | 
acos()
Arc cosine operation. 
 | 
DerivativeStructure | 
acosh()
Inverse hyperbolic cosine operation. 
 | 
DerivativeStructure | 
add(DerivativeStructure a)
Compute this + a. 
 | 
DerivativeStructure | 
add(double a)
'+' operator. 
 | 
DerivativeStructure | 
asin()
Arc sine operation. 
 | 
DerivativeStructure | 
asinh()
Inverse hyperbolic sine operation. 
 | 
DerivativeStructure | 
atan()
Arc tangent operation. 
 | 
DerivativeStructure | 
atan2(DerivativeStructure x)
Two arguments arc tangent operation. 
 | 
static DerivativeStructure | 
atan2(DerivativeStructure y,
     DerivativeStructure x)
Two arguments arc tangent operation. 
 | 
DerivativeStructure | 
atanh()
Inverse hyperbolic  tangent operation. 
 | 
DerivativeStructure | 
cbrt()
Cubic root. 
 | 
DerivativeStructure | 
ceil()
Get the smallest whole number larger than instance. 
 | 
DerivativeStructure | 
compose(double... f)
Compute composition of the instance by a univariate function. 
 | 
DerivativeStructure | 
copySign(DerivativeStructure sign)
Returns the instance with the sign of the argument. 
 | 
DerivativeStructure | 
copySign(double sign)
Returns the instance with the sign of the argument. 
 | 
DerivativeStructure | 
cos()
Cosine operation. 
 | 
DerivativeStructure | 
cosh()
Hyperbolic cosine operation. 
 | 
DerivativeStructure | 
differentiate(int varIndex,
             int differentiationOrder)
Differentiate w.r.t. 
 | 
DerivativeStructure | 
divide(DerivativeStructure a)
Compute this ÷ a. 
 | 
DerivativeStructure | 
divide(double a)
'÷' operator. 
 | 
boolean | 
equals(Object other)
Test for the equality of two derivative structures. 
 | 
DerivativeStructure | 
exp()
Exponential. 
 | 
DerivativeStructure | 
expm1()
Exponential minus 1. 
 | 
DerivativeStructure | 
floor()
Get the largest whole number smaller than instance. 
 | 
double[] | 
getAllDerivatives()
Get all partial derivatives. 
 | 
int | 
getExponent()
Return the exponent of the instance value, removing the bias. 
 | 
DSFactory | 
getFactory()
Get the factory that built the instance. 
 | 
Field<DerivativeStructure> | 
getField()
Get the  
Field to which the instance belongs. | 
int | 
getFreeParameters()
Get the number of free parameters. 
 | 
int | 
getOrder()
Get the derivation order. 
 | 
double | 
getPartialDerivative(int... orders)
Get a partial derivative. 
 | 
DerivativeStructure | 
getPi()
Get the Archimedes constant π. 
 | 
double | 
getReal()
Get the real value of the number. 
 | 
double | 
getValue()
Get the value part of the derivative structure. 
 | 
int | 
hashCode()
Get a hashCode for the derivative structure. 
 | 
DerivativeStructure | 
hypot(DerivativeStructure y)
Returns the hypotenuse of a triangle with sides  
this and y
 - sqrt(this2 +y2)
 avoiding intermediate overflow or underflow. | 
static DerivativeStructure | 
hypot(DerivativeStructure x,
     DerivativeStructure y)
Returns the hypotenuse of a triangle with sides  
x and y
 - sqrt(x2 +y2)
 avoiding intermediate overflow or underflow. | 
DerivativeStructure | 
integrate(int varIndex,
         int integrationOrder)
Integrate w.r.t. 
 | 
DerivativeStructure | 
linearCombination(DerivativeStructure[] a,
                 DerivativeStructure[] b)
Compute a linear combination. 
 | 
DerivativeStructure | 
linearCombination(DerivativeStructure a1,
                 DerivativeStructure b1,
                 DerivativeStructure a2,
                 DerivativeStructure b2)
Compute a linear combination. 
 | 
DerivativeStructure | 
linearCombination(DerivativeStructure a1,
                 DerivativeStructure b1,
                 DerivativeStructure a2,
                 DerivativeStructure b2,
                 DerivativeStructure a3,
                 DerivativeStructure b3)
Compute a linear combination. 
 | 
DerivativeStructure | 
linearCombination(DerivativeStructure a1,
                 DerivativeStructure b1,
                 DerivativeStructure a2,
                 DerivativeStructure b2,
                 DerivativeStructure a3,
                 DerivativeStructure b3,
                 DerivativeStructure a4,
                 DerivativeStructure b4)
Compute a linear combination. 
 | 
DerivativeStructure | 
linearCombination(double[] a,
                 DerivativeStructure[] b)
Compute a linear combination. 
 | 
DerivativeStructure | 
linearCombination(double a1,
                 DerivativeStructure b1,
                 double a2,
                 DerivativeStructure b2)
Compute a linear combination. 
 | 
DerivativeStructure | 
linearCombination(double a1,
                 DerivativeStructure b1,
                 double a2,
                 DerivativeStructure b2,
                 double a3,
                 DerivativeStructure b3)
Compute a linear combination. 
 | 
DerivativeStructure | 
linearCombination(double a1,
                 DerivativeStructure b1,
                 double a2,
                 DerivativeStructure b2,
                 double a3,
                 DerivativeStructure b3,
                 double a4,
                 DerivativeStructure b4)
Compute a linear combination. 
 | 
DerivativeStructure | 
log()
Natural logarithm. 
 | 
DerivativeStructure | 
log10()
Base 10 logarithm. 
 | 
DerivativeStructure | 
log1p()
Shifted natural logarithm. 
 | 
DerivativeStructure | 
multiply(DerivativeStructure a)
Compute this × a. 
 | 
DerivativeStructure | 
multiply(double a)
'×' operator. 
 | 
DerivativeStructure | 
multiply(int n)
Compute n × this. 
 | 
DerivativeStructure | 
negate()
Returns the additive inverse of  
this element. | 
DerivativeStructure | 
newInstance(double value)
Create an instance corresponding to a constant real value. 
 | 
DerivativeStructure | 
pow(DerivativeStructure e)
Power operation. 
 | 
DerivativeStructure | 
pow(double p)
Power operation. 
 | 
static DerivativeStructure | 
pow(double a,
   DerivativeStructure x)
Compute ax where a is a double and x a  
DerivativeStructure | 
DerivativeStructure | 
pow(int n)
Integer power operation. 
 | 
DerivativeStructure | 
rebase(DerivativeStructure... p)
Rebase instance with respect to low level parameter functions. 
 | 
DerivativeStructure | 
reciprocal()
Returns the multiplicative inverse of  
this element. | 
DerivativeStructure | 
remainder(DerivativeStructure a)
IEEE remainder operator. 
 | 
DerivativeStructure | 
remainder(double a)
IEEE remainder operator. 
 | 
DerivativeStructure | 
rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers. 
 | 
DerivativeStructure | 
rootN(int n)
Nth root. 
 | 
DerivativeStructure | 
scalb(int n)
Multiply the instance by a power of 2. 
 | 
DerivativeStructure | 
sign()
Compute the sign of the instance. 
 | 
DerivativeStructure | 
sin()
Sine operation. 
 | 
FieldSinCos<DerivativeStructure> | 
sinCos()
Combined Sine and Cosine operation. 
 | 
DerivativeStructure | 
sinh()
Hyperbolic sine operation. 
 | 
FieldSinhCosh<DerivativeStructure> | 
sinhCosh()
Combined hyperbolic sine and sosine operation. 
 | 
DerivativeStructure | 
sqrt()
Square root. 
 | 
DerivativeStructure | 
subtract(DerivativeStructure a)
Compute this - a. 
 | 
DerivativeStructure | 
subtract(double a)
'-' operator. 
 | 
DerivativeStructure | 
tan()
Tangent operation. 
 | 
DerivativeStructure | 
tanh()
Hyperbolic tangent operation. 
 | 
double | 
taylor(double... delta)
Evaluate Taylor expansion a derivative structure. 
 | 
DerivativeStructure | 
toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP 
 | 
DerivativeStructure | 
toRadians()
Convert degrees to radians, with error of less than 0.5 ULP 
 | 
DerivativeStructure | 
ulp()
Compute least significant bit (Unit in Last Position) for a number. 
 | 
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, waitisFinite, isInfinite, isNaN, norm, roundisZeropublic DerivativeStructure newInstance(double value)
newInstance in interface CalculusFieldElement<DerivativeStructure>value - constant real valuepublic DSFactory getFactory()
public int getFreeParameters()
DerivativegetFreeParameters in interface Derivative<DerivativeStructure>public int getOrder()
DerivativegetOrder in interface Derivative<DerivativeStructure>public double getReal()
getReal in interface FieldElement<DerivativeStructure>public double getValue()
getValue in interface Derivative<DerivativeStructure>getPartialDerivative(int...)public double getPartialDerivative(int... orders)
                            throws MathIllegalArgumentException
getPartialDerivative in interface Derivative<DerivativeStructure>orders - derivation orders with respect to each variable (if all orders are 0,
 the value is returned)MathIllegalArgumentException - if the numbers of variables does not
 match the instanceDerivative.getValue()public double[] getAllDerivatives()
DSCompiler.getPartialDerivativeIndex(int...)public DerivativeStructure add(double a)
add in interface CalculusFieldElement<DerivativeStructure>a - right hand side parameter of the operatorpublic DerivativeStructure add(DerivativeStructure a) throws MathIllegalArgumentException
add in interface FieldElement<DerivativeStructure>a - element to addMathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic DerivativeStructure subtract(double a)
subtract in interface CalculusFieldElement<DerivativeStructure>a - right hand side parameter of the operatorpublic DerivativeStructure subtract(DerivativeStructure a) throws MathIllegalArgumentException
subtract in interface FieldElement<DerivativeStructure>a - element to subtractMathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic DerivativeStructure multiply(int n)
multiply in interface FieldElement<DerivativeStructure>n - Number of times this must be added to itself.public DerivativeStructure multiply(double a)
multiply in interface CalculusFieldElement<DerivativeStructure>a - right hand side parameter of the operatorpublic DerivativeStructure multiply(DerivativeStructure a) throws MathIllegalArgumentException
multiply in interface FieldElement<DerivativeStructure>a - element to multiplyMathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic DerivativeStructure divide(double a)
divide in interface CalculusFieldElement<DerivativeStructure>a - right hand side parameter of the operatorpublic DerivativeStructure divide(DerivativeStructure a) throws MathIllegalArgumentException
divide in interface FieldElement<DerivativeStructure>a - element to divide byMathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic DerivativeStructure remainder(double a)
remainder in interface CalculusFieldElement<DerivativeStructure>a - right hand side parameter of the operatorpublic DerivativeStructure remainder(DerivativeStructure a) throws MathIllegalArgumentException
remainder in interface CalculusFieldElement<DerivativeStructure>a - right hand side parameter of the operatorMathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic DerivativeStructure negate()
this element.negate in interface FieldElement<DerivativeStructure>this.public DerivativeStructure abs()
 Just another name for CalculusFieldElement.norm()
 
abs in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure ceil()
ceil in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure floor()
floor in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure rint()
rint in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure sign()
sign in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure copySign(DerivativeStructure sign)
sign argument is treated as positive.copySign in interface CalculusFieldElement<DerivativeStructure>sign - the sign for the returned valuesign argumentpublic DerivativeStructure copySign(double sign)
sign argument is treated as positive.copySign in interface CalculusFieldElement<DerivativeStructure>sign - the sign for the returned valuesign argumentpublic int getExponent()
For double numbers of the form 2x, the unbiased exponent is exactly x.
getExponent in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure scalb(int n)
scalb in interface CalculusFieldElement<DerivativeStructure>n - power of 2public DerivativeStructure ulp()
 The ulp function is a step function, hence all its derivatives are 0.
 
ulp in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure hypot(DerivativeStructure y) throws MathIllegalArgumentException
this and y
 - sqrt(this2 +y2)
 avoiding intermediate overflow or underflow.
 hypot in interface CalculusFieldElement<DerivativeStructure>y - a valueMathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic static DerivativeStructure hypot(DerivativeStructure x, DerivativeStructure y) throws MathIllegalArgumentException
x and y
 - sqrt(x2 +y2)
 avoiding intermediate overflow or underflow.
 x - a valuey - a valueMathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic DerivativeStructure compose(double... f) throws MathIllegalArgumentException
compose in interface Derivative<DerivativeStructure>f - array of value and derivatives of the function at
 the current point (i.e. [f(getValue()),
 f'(getValue()), f''(getValue())...]).MathIllegalArgumentException - if the number of derivatives
 in the array is not equal to order + 1public DerivativeStructure reciprocal()
this element.reciprocal in interface CalculusFieldElement<DerivativeStructure>reciprocal in interface FieldElement<DerivativeStructure>this.public DerivativeStructure sqrt()
sqrt in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure cbrt()
cbrt in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure rootN(int n)
rootN in interface CalculusFieldElement<DerivativeStructure>n - order of the rootpublic Field<DerivativeStructure> getField()
Field to which the instance belongs.getField in interface FieldElement<DerivativeStructure>Field to which the instance belongspublic static DerivativeStructure pow(double a, DerivativeStructure x)
DerivativeStructurea - number to exponentiatex - power to applypublic DerivativeStructure pow(double p)
pow in interface CalculusFieldElement<DerivativeStructure>p - power to applypublic DerivativeStructure pow(int n)
pow in interface CalculusFieldElement<DerivativeStructure>n - power to applypublic DerivativeStructure pow(DerivativeStructure e) throws MathIllegalArgumentException
pow in interface CalculusFieldElement<DerivativeStructure>e - exponentMathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic DerivativeStructure exp()
exp in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure expm1()
expm1 in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure log()
log in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure log1p()
log1p in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure log10()
log10 in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure cos()
cos in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure sin()
sin in interface CalculusFieldElement<DerivativeStructure>public FieldSinCos<DerivativeStructure> sinCos()
sinCos in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure tan()
tan in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure acos()
acos in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure asin()
asin in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure atan()
atan in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure atan2(DerivativeStructure x) throws MathIllegalArgumentException
 Beware of the order or arguments! As this is based on a
 two-arguments functions, in order to be consistent with
 arguments order, the instance is the first argument
 and the single provided argument is the second argument.
 In order to be consistent with programming languages atan2,
 this method computes atan2(this, x), i.e. the instance
 represents the y argument and the x argument is
 the one passed as a single argument. This may seem confusing especially
 for users of Wolfram alpha, as this site is not consistent
 with programming languages atan2 two-arguments arc tangent
 and puts x as its first argument.
 
atan2 in interface CalculusFieldElement<DerivativeStructure>x - second argument of the arc tangentMathIllegalArgumentException - if number of free parameters or orders are inconsistentpublic static DerivativeStructure atan2(DerivativeStructure y, DerivativeStructure x) throws MathIllegalArgumentException
y - first argument of the arc tangentx - second argument of the arc tangentMathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic DerivativeStructure cosh()
cosh in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure sinh()
sinh in interface CalculusFieldElement<DerivativeStructure>public FieldSinhCosh<DerivativeStructure> sinhCosh()
sinhCosh in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure tanh()
tanh in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure acosh()
acosh in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure asinh()
asinh in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure atanh()
atanh in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure toDegrees()
toDegrees in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure toRadians()
toRadians in interface CalculusFieldElement<DerivativeStructure>public DerivativeStructure integrate(int varIndex, int integrationOrder)
Rigorously, if the derivatives of a function are known up to order N, the ones of its M-th integral w.r.t. a given variable (seen as a function itself) are actually known up to order N+M. However, this method still casts the output as a DerivativeStructure of order N. The integration constants are systematically set to zero.
varIndex - Index of independent variable w.r.t. which integration is done.integrationOrder - Number of times the integration operator must be applied. If non-positive, call the
                         differentiation operator.public DerivativeStructure differentiate(int varIndex, int differentiationOrder)
Rigorously, if the derivatives of a function are known up to order N, the ones of its M-th derivative w.r.t. a given variable (seen as a function itself) are only known up to order N-M. However, this method still casts the output as a DerivativeStructure of order N with zeroes for the higher order terms.
varIndex - Index of independent variable w.r.t. which differentiation is done.differentiationOrder - Number of times the differentiation operator must be applied. If non-positive, call
                             the integration operator instead.public double taylor(double... delta)
              throws MathRuntimeException
delta - parameters offsets (Δx, Δy, ...)MathRuntimeException - if factorials becomes too largepublic DerivativeStructure rebase(DerivativeStructure... p)
 The instance is considered to be a function of n free parameters up to order o \(f(p_0, p_1, \ldots p_{n-1})\).
 Its partial derivatives are therefore
 \(f, \frac{\partial f}{\partial p_0}, \frac{\partial f}{\partial p_1}, \ldots
 \frac{\partial^2 f}{\partial p_0^2}, \frac{\partial^2 f}{\partial p_0 p_1},
 \ldots \frac{\partial^o f}{\partial p_{n-1}^o}\). The free parameters
 \(p_0, p_1, \ldots p_{n-1}\) are considered to be functions of \(m\) lower
 level other parameters \(q_0, q_1, \ldots q_{m-1}\).
 
 This method compute the composition of the partial derivatives of \(f\)
 and the partial derivatives of \(p_0, p_1, \ldots p_{n-1}\), i.e. the
 partial derivatives of the value
 returned will be
 \(f, \frac{\partial f}{\partial q_0}, \frac{\partial f}{\partial q_1}, \ldots
 \frac{\partial^2 f}{\partial q_0^2}, \frac{\partial^2 f}{\partial q_0 q_1},
 \ldots \frac{\partial^o f}{\partial q_{m-1}^o}\).
 
 The number of parameters must match getFreeParameters() and the
 derivation orders of the instance and parameters must also match.
 
p - base parameters with respect to which partial derivatives
 were computed in the instancepublic DerivativeStructure linearCombination(DerivativeStructure[] a, DerivativeStructure[] b) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<DerivativeStructure>a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic DerivativeStructure linearCombination(double[] a, DerivativeStructure[] b) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<DerivativeStructure>a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic DerivativeStructure linearCombination(DerivativeStructure a1, DerivativeStructure b1, DerivativeStructure a2, DerivativeStructure b2) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<DerivativeStructure>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termMathIllegalArgumentException - if number of free parameters
 or orders do not matchCalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement), 
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)public DerivativeStructure linearCombination(double a1, DerivativeStructure b1, double a2, DerivativeStructure b2) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<DerivativeStructure>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termMathIllegalArgumentException - if number of free parameters
 or orders do not matchCalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement), 
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)public DerivativeStructure linearCombination(DerivativeStructure a1, DerivativeStructure b1, DerivativeStructure a2, DerivativeStructure b2, DerivativeStructure a3, DerivativeStructure b3) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<DerivativeStructure>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termMathIllegalArgumentException - if number of free parameters
 or orders do not matchCalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement), 
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)public DerivativeStructure linearCombination(double a1, DerivativeStructure b1, double a2, DerivativeStructure b2, double a3, DerivativeStructure b3) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<DerivativeStructure>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termMathIllegalArgumentException - if number of free parameters
 or orders do not matchCalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement), 
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)public DerivativeStructure linearCombination(DerivativeStructure a1, DerivativeStructure b1, DerivativeStructure a2, DerivativeStructure b2, DerivativeStructure a3, DerivativeStructure b3, DerivativeStructure a4, DerivativeStructure b4) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<DerivativeStructure>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the fourth termb4 - second factor of the fourth termMathIllegalArgumentException - if number of free parameters
 or orders do not matchCalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement), 
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)public DerivativeStructure linearCombination(double a1, DerivativeStructure b1, double a2, DerivativeStructure b2, double a3, DerivativeStructure b3, double a4, DerivativeStructure b4) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<DerivativeStructure>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the fourth termb4 - second factor of the fourth termMathIllegalArgumentException - if number of free parameters
 or orders do not matchCalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement), 
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)public DerivativeStructure getPi()
Archimedes constant is the ratio of a circle's circumference to its diameter.
getPi in interface CalculusFieldElement<DerivativeStructure>public boolean equals(Object other)
Derivative structures are considered equal if they have the same number of free parameters, the same derivation order, and the same derivatives.
Copyright © 2016-2022 CS GROUP. All rights reserved.