T - the type of the field elementspublic class FieldTuple<T extends CalculusFieldElement<T>> extends Object implements CalculusFieldElement<FieldTuple<T>>
| Constructor and Description |
|---|
FieldTuple(T... x)
Creates a new instance from its components.
|
| Modifier and Type | Method and Description |
|---|---|
FieldTuple<T> |
abs()
absolute value.
|
FieldTuple<T> |
acos()
Arc cosine operation.
|
FieldTuple<T> |
acosh()
Inverse hyperbolic cosine operation.
|
FieldTuple<T> |
add(double a)
'+' operator.
|
FieldTuple<T> |
add(FieldTuple<T> a)
Compute this + a.
|
FieldTuple<T> |
asin()
Arc sine operation.
|
FieldTuple<T> |
asinh()
Inverse hyperbolic sine operation.
|
FieldTuple<T> |
atan()
Arc tangent operation.
|
FieldTuple<T> |
atan2(FieldTuple<T> x)
Two arguments arc tangent operation.
|
FieldTuple<T> |
atanh()
Inverse hyperbolic tangent operation.
|
FieldTuple<T> |
cbrt()
Cubic root.
|
FieldTuple<T> |
ceil()
Get the smallest whole number larger than instance.
|
FieldTuple<T> |
copySign(double sign)
Returns the instance with the sign of the argument.
|
FieldTuple<T> |
copySign(FieldTuple<T> sign)
Returns the instance with the sign of the argument.
|
FieldTuple<T> |
cos()
Cosine operation.
|
FieldTuple<T> |
cosh()
Hyperbolic cosine operation.
|
FieldTuple<T> |
divide(double a)
'÷' operator.
|
FieldTuple<T> |
divide(FieldTuple<T> a)
Compute this ÷ a.
|
boolean |
equals(Object obj) |
FieldTuple<T> |
exp()
Exponential.
|
FieldTuple<T> |
expm1()
Exponential minus 1.
|
FieldTuple<T> |
floor()
Get the largest whole number smaller than instance.
|
T |
getComponent(int index)
Get one component of the tuple.
|
T[] |
getComponents()
Get all components of the tuple.
|
int |
getDimension()
Get the dimension of the tuple.
|
Field<FieldTuple<T>> |
getField()
Get the
Field to which the instance belongs. |
FieldTuple<T> |
getPi()
Get the Archimedes constant π.
|
double |
getReal()
Get the real value of the number.
|
int |
hashCode() |
FieldTuple<T> |
hypot(FieldTuple<T> y)
Returns the hypotenuse of a triangle with sides
this and y
- sqrt(this2 +y2)
avoiding intermediate overflow or underflow. |
FieldTuple<T> |
linearCombination(double[] a,
FieldTuple<T>[] b)
Compute a linear combination.
|
FieldTuple<T> |
linearCombination(double a1,
FieldTuple<T> b1,
double a2,
FieldTuple<T> b2)
Compute a linear combination.
|
FieldTuple<T> |
linearCombination(double a1,
FieldTuple<T> b1,
double a2,
FieldTuple<T> b2,
double a3,
FieldTuple<T> b3)
Compute a linear combination.
|
FieldTuple<T> |
linearCombination(double a1,
FieldTuple<T> b1,
double a2,
FieldTuple<T> b2,
double a3,
FieldTuple<T> b3,
double a4,
FieldTuple<T> b4)
Compute a linear combination.
|
FieldTuple<T> |
linearCombination(FieldTuple<T>[] a,
FieldTuple<T>[] b)
Compute a linear combination.
|
FieldTuple<T> |
linearCombination(FieldTuple<T> a1,
FieldTuple<T> b1,
FieldTuple<T> a2,
FieldTuple<T> b2)
Compute a linear combination.
|
FieldTuple<T> |
linearCombination(FieldTuple<T> a1,
FieldTuple<T> b1,
FieldTuple<T> a2,
FieldTuple<T> b2,
FieldTuple<T> a3,
FieldTuple<T> b3)
Compute a linear combination.
|
FieldTuple<T> |
linearCombination(FieldTuple<T> a1,
FieldTuple<T> b1,
FieldTuple<T> a2,
FieldTuple<T> b2,
FieldTuple<T> a3,
FieldTuple<T> b3,
FieldTuple<T> a4,
FieldTuple<T> b4)
Compute a linear combination.
|
FieldTuple<T> |
log()
Natural logarithm.
|
FieldTuple<T> |
log10()
Base 10 logarithm.
|
FieldTuple<T> |
log1p()
Shifted natural logarithm.
|
FieldTuple<T> |
multiply(double a)
'×' operator.
|
FieldTuple<T> |
multiply(FieldTuple<T> a)
Compute this × a.
|
FieldTuple<T> |
multiply(int n)
Compute n × this.
|
FieldTuple<T> |
negate()
Returns the additive inverse of
this element. |
FieldTuple<T> |
newInstance(double value)
Create an instance corresponding to a constant real value.
|
FieldTuple<T> |
pow(double p)
Power operation.
|
FieldTuple<T> |
pow(FieldTuple<T> e)
Power operation.
|
FieldTuple<T> |
pow(int n)
Integer power operation.
|
FieldTuple<T> |
reciprocal()
Returns the multiplicative inverse of
this element. |
FieldTuple<T> |
remainder(double a)
IEEE remainder operator.
|
FieldTuple<T> |
remainder(FieldTuple<T> a)
IEEE remainder operator.
|
FieldTuple<T> |
rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.
|
FieldTuple<T> |
rootN(int n)
Nth root.
|
FieldTuple<T> |
scalb(int n)
Multiply the instance by a power of 2.
|
FieldTuple<T> |
sign()
Compute the sign of the instance.
|
FieldTuple<T> |
sin()
Sine operation.
|
FieldSinCos<FieldTuple<T>> |
sinCos()
Combined Sine and Cosine operation.
|
FieldTuple<T> |
sinh()
Hyperbolic sine operation.
|
FieldSinhCosh<FieldTuple<T>> |
sinhCosh()
Combined hyperbolic sine and sosine operation.
|
FieldTuple<T> |
sqrt()
Square root.
|
FieldTuple<T> |
subtract(double a)
'-' operator.
|
FieldTuple<T> |
subtract(FieldTuple<T> a)
Compute this - a.
|
FieldTuple<T> |
tan()
Tangent operation.
|
FieldTuple<T> |
tanh()
Hyperbolic tangent operation.
|
FieldTuple<T> |
toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP
|
FieldTuple<T> |
toRadians()
Convert degrees to radians, with error of less than 0.5 ULP
|
FieldTuple<T> |
ulp()
Compute least significant bit (Unit in Last Position) for a number.
|
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, waitgetExponent, isFinite, isInfinite, isNaN, norm, roundisZero@SafeVarargs public FieldTuple(T... x)
x - components of the tuplepublic FieldTuple<T> newInstance(double value)
newInstance in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>value - constant real valuepublic int getDimension()
public T getComponent(int index)
index - index of the component, between 0 and getDimension() - 1public T[] getComponents()
public Field<FieldTuple<T>> getField()
Field to which the instance belongs.getField in interface FieldElement<FieldTuple<T extends CalculusFieldElement<T>>>Field to which the instance belongspublic FieldTuple<T> add(FieldTuple<T> a)
add in interface FieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a - element to addpublic FieldTuple<T> subtract(FieldTuple<T> a)
subtract in interface FieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a - element to subtractpublic FieldTuple<T> negate()
this element.negate in interface FieldElement<FieldTuple<T extends CalculusFieldElement<T>>>this.public FieldTuple<T> multiply(FieldTuple<T> a)
multiply in interface FieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a - element to multiplypublic FieldTuple<T> multiply(int n)
multiply in interface FieldElement<FieldTuple<T extends CalculusFieldElement<T>>>n - Number of times this must be added to itself.public FieldTuple<T> divide(FieldTuple<T> a)
divide in interface FieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a - element to divide bypublic FieldTuple<T> reciprocal()
this element.reciprocal in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>reciprocal in interface FieldElement<FieldTuple<T extends CalculusFieldElement<T>>>this.public double getReal()
getReal in interface FieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> add(double a)
add in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldTuple<T> subtract(double a)
subtract in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldTuple<T> multiply(double a)
multiply in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldTuple<T> divide(double a)
divide in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldTuple<T> remainder(double a)
remainder in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldTuple<T> remainder(FieldTuple<T> a)
remainder in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldTuple<T> abs()
Just another name for CalculusFieldElement.norm()
abs in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> ceil()
ceil in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> floor()
floor in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> rint()
rint in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> sign()
sign in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> copySign(FieldTuple<T> sign)
sign argument is treated as positive.copySign in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>sign - the sign for the returned valuesign argumentpublic FieldTuple<T> copySign(double sign)
sign argument is treated as positive.copySign in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>sign - the sign for the returned valuesign argumentpublic FieldTuple<T> scalb(int n)
scalb in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>n - power of 2public FieldTuple<T> ulp()
ulp in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> hypot(FieldTuple<T> y)
this and y
- sqrt(this2 +y2)
avoiding intermediate overflow or underflow.
hypot in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>y - a valuepublic FieldTuple<T> sqrt()
sqrt in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> cbrt()
cbrt in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> rootN(int n)
rootN in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>n - order of the rootpublic FieldTuple<T> pow(double p)
pow in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>p - power to applypublic FieldTuple<T> pow(int n)
pow in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>n - power to applypublic FieldTuple<T> pow(FieldTuple<T> e)
pow in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>e - exponentpublic FieldTuple<T> exp()
exp in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> expm1()
expm1 in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> log()
log in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> log1p()
log1p in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> log10()
log10 in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> cos()
cos in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> sin()
sin in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldSinCos<FieldTuple<T>> sinCos()
sinCos in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> tan()
tan in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> acos()
acos in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> asin()
asin in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> atan()
atan in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> atan2(FieldTuple<T> x)
Beware of the order or arguments! As this is based on a
two-arguments functions, in order to be consistent with
arguments order, the instance is the first argument
and the single provided argument is the second argument.
In order to be consistent with programming languages atan2,
this method computes atan2(this, x), i.e. the instance
represents the y argument and the x argument is
the one passed as a single argument. This may seem confusing especially
for users of Wolfram alpha, as this site is not consistent
with programming languages atan2 two-arguments arc tangent
and puts x as its first argument.
atan2 in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>x - second argument of the arc tangentpublic FieldTuple<T> cosh()
cosh in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> sinh()
sinh in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldSinhCosh<FieldTuple<T>> sinhCosh()
sinhCosh in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> tanh()
tanh in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> acosh()
acosh in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> asinh()
asinh in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> atanh()
atanh in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> toDegrees()
toDegrees in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> toRadians()
toRadians in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>public FieldTuple<T> linearCombination(FieldTuple<T>[] a, FieldTuple<T>[] b) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if arrays dimensions don't matchpublic FieldTuple<T> linearCombination(double[] a, FieldTuple<T>[] b) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if arrays dimensions don't matchpublic FieldTuple<T> linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2)
linearCombination in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termCalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement),
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)public FieldTuple<T> linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2)
linearCombination in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termCalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement),
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)public FieldTuple<T> linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2, FieldTuple<T> a3, FieldTuple<T> b3)
linearCombination in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termCalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)public FieldTuple<T> linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2, double a3, FieldTuple<T> b3)
linearCombination in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termCalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)public FieldTuple<T> linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2, FieldTuple<T> a3, FieldTuple<T> b3, FieldTuple<T> a4, FieldTuple<T> b4)
linearCombination in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the fourth termb4 - second factor of the fourth termCalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)public FieldTuple<T> linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2, double a3, FieldTuple<T> b3, double a4, FieldTuple<T> b4)
linearCombination in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the fourth termb4 - second factor of the fourth termCalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)public FieldTuple<T> getPi()
Archimedes constant is the ratio of a circle's circumference to its diameter.
getPi in interface CalculusFieldElement<FieldTuple<T extends CalculusFieldElement<T>>>Copyright © 2016-2022 CS GROUP. All rights reserved.