T
- Type of the field elements.public class FieldGaussIntegratorFactory<T extends CalculusFieldElement<T>> extends Object
Gaussian integration rule
.Constructor and Description |
---|
FieldGaussIntegratorFactory(Field<T> field)
Simple constructor.
|
Modifier and Type | Method and Description |
---|---|
SymmetricFieldGaussIntegrator<T> |
hermite(int numberOfPoints)
Creates a Gauss-Hermite integrator of the given order.
|
FieldGaussIntegrator<T> |
laguerre(int numberOfPoints)
Creates a Gauss-Laguerre integrator of the given order.
|
FieldGaussIntegrator<T> |
legendre(int numberOfPoints)
Creates a Gauss-Legendre integrator of the given order.
|
FieldGaussIntegrator<T> |
legendre(int numberOfPoints,
T lowerBound,
T upperBound)
Creates a Gauss-Legendre integrator of the given order.
|
public FieldGaussIntegrator<T> laguerre(int numberOfPoints)
integrate
method will perform an integration on the interval
\([0, +\infty)\): the computed value is the improper integral of
\(e^{-x} f(x)\)
where \(f(x)\) is the function passed to the
integrate
method.numberOfPoints
- Order of the integration rule.public FieldGaussIntegrator<T> legendre(int numberOfPoints)
integrate
method will perform an integration on the natural interval
[-1 , 1]
.numberOfPoints
- Order of the integration rule.public FieldGaussIntegrator<T> legendre(int numberOfPoints, T lowerBound, T upperBound) throws MathIllegalArgumentException
integrate
method will perform an integration on the given interval.numberOfPoints
- Order of the integration rule.lowerBound
- Lower bound of the integration interval.upperBound
- Upper bound of the integration interval.MathIllegalArgumentException
- if number of points is not positivepublic SymmetricFieldGaussIntegrator<T> hermite(int numberOfPoints)
integrate
method will perform a weighted integration on the interval
\([-\infty, +\infty]\): the computed value is the improper integral of
\(e^{-x^2}f(x)\)
where \(f(x)\) is the function passed to the
integrate
method.numberOfPoints
- Order of the integration rule.Copyright © 2016-2022 CS GROUP. All rights reserved.