Package | Description |
---|---|
org.hipparchus.optim |
Generally, optimizers are algorithms that will either
minimize or
maximize
a scalar function, called the
objective
function . |
org.hipparchus.optim.linear |
Optimization algorithms for linear constrained problems.
|
org.hipparchus.optim.nonlinear.scalar |
Algorithms for optimizing a scalar function.
|
org.hipparchus.optim.nonlinear.scalar.gradient |
This package provides optimization algorithms that require derivatives.
|
org.hipparchus.optim.nonlinear.scalar.noderiv |
This package provides optimization algorithms that do not require derivatives.
|
org.hipparchus.optim.univariate |
One-dimensional optimization algorithms.
|
Modifier and Type | Class and Description |
---|---|
class |
InitialGuess
Starting point (first guess) of the optimization procedure.
|
class |
MaxEval
Maximum number of evaluations of the function to be optimized.
|
class |
MaxIter
Maximum number of iterations performed by an (iterative) algorithm.
|
class |
SimpleBounds
Simple optimization constraints: lower and upper bounds.
|
Modifier and Type | Method and Description |
---|---|
P |
BaseMultiStartMultivariateOptimizer.optimize(OptimizationData... optData)
Stores data and performs the optimization.
|
P |
BaseMultivariateOptimizer.optimize(OptimizationData... optData)
Stores data and performs the optimization.
|
P |
BaseOptimizer.optimize(OptimizationData... optData)
Stores data and performs the optimization.
|
protected void |
BaseMultivariateOptimizer.parseOptimizationData(OptimizationData... optData)
Scans the list of (required and optional) optimization data that
characterize the problem.
|
protected void |
BaseOptimizer.parseOptimizationData(OptimizationData... optData)
Scans the list of (required and optional) optimization data that
characterize the problem.
|
Modifier and Type | Class and Description |
---|---|
class |
LinearConstraintSet
Class that represents a set of
linear constraints . |
class |
LinearObjectiveFunction
An objective function for a linear optimization problem.
|
class |
NonNegativeConstraint
A constraint for a linear optimization problem indicating whether all
variables must be restricted to non-negative values.
|
class |
PivotSelectionRule
Pivot selection rule to the use for a Simplex solver.
|
class |
SolutionCallback
A callback object that can be provided to a linear optimizer to keep track
of the best solution found.
|
Modifier and Type | Method and Description |
---|---|
PointValuePair |
LinearOptimizer.optimize(OptimizationData... optData)
Stores data and performs the optimization.
|
PointValuePair |
SimplexSolver.optimize(OptimizationData... optData)
Stores data and performs the optimization.
|
protected void |
LinearOptimizer.parseOptimizationData(OptimizationData... optData)
Scans the list of (required and optional) optimization data that
characterize the problem.
|
protected void |
SimplexSolver.parseOptimizationData(OptimizationData... optData)
Scans the list of (required and optional) optimization data that
characterize the problem.
|
Modifier and Type | Class and Description |
---|---|
class |
GoalType
Goal type for an optimization problem (minimization or maximization of
a scalar function.
|
class |
ObjectiveFunction
Scalar function to be optimized.
|
class |
ObjectiveFunctionGradient
Gradient of the scalar function to be optimized.
|
Modifier and Type | Method and Description |
---|---|
PointValuePair |
MultivariateOptimizer.optimize(OptimizationData... optData)
Stores data and performs the optimization.
|
PointValuePair |
GradientMultivariateOptimizer.optimize(OptimizationData... optData)
Stores data and performs the optimization.
|
protected void |
MultivariateOptimizer.parseOptimizationData(OptimizationData... optData)
Scans the list of (required and optional) optimization data that
characterize the problem.
|
protected void |
GradientMultivariateOptimizer.parseOptimizationData(OptimizationData... optData)
Scans the list of (required and optional) optimization data that
characterize the problem.
|
Modifier and Type | Method and Description |
---|---|
PointValuePair |
NonLinearConjugateGradientOptimizer.optimize(OptimizationData... optData)
Stores data and performs the optimization.
|
protected void |
NonLinearConjugateGradientOptimizer.parseOptimizationData(OptimizationData... optData)
Scans the list of (required and optional) optimization data that
characterize the problem.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractSimplex
This class implements the simplex concept.
|
static class |
CMAESOptimizer.PopulationSize
Population size.
|
static class |
CMAESOptimizer.Sigma
Input sigma values.
|
class |
MultiDirectionalSimplex
This class implements the multi-directional direct search method.
|
class |
NelderMeadSimplex
This class implements the Nelder-Mead simplex algorithm.
|
Modifier and Type | Method and Description |
---|---|
PointValuePair |
CMAESOptimizer.optimize(OptimizationData... optData)
Stores data and performs the optimization.
|
PointValuePair |
SimplexOptimizer.optimize(OptimizationData... optData)
Stores data and performs the optimization.
|
protected void |
CMAESOptimizer.parseOptimizationData(OptimizationData... optData)
Scans the list of (required and optional) optimization data that
characterize the problem.
|
protected void |
SimplexOptimizer.parseOptimizationData(OptimizationData... optData)
Scans the list of (required and optional) optimization data that
characterize the problem.
|
Modifier and Type | Class and Description |
---|---|
class |
SearchInterval
Search interval and (optional) start value.
|
class |
UnivariateObjectiveFunction
Scalar function to be optimized.
|
Modifier and Type | Method and Description |
---|---|
UnivariatePointValuePair |
UnivariateOptimizer.optimize(OptimizationData... optData)
Stores data and performs the optimization.
|
UnivariatePointValuePair |
MultiStartUnivariateOptimizer.optimize(OptimizationData... optData)
Stores data and performs the optimization.
|
protected void |
UnivariateOptimizer.parseOptimizationData(OptimizationData... optData)
Scans the list of (required and optional) optimization data that
characterize the problem.
|
Copyright © 2016-2021 CS GROUP. All rights reserved.