Package | Description |
---|---|
org.hipparchus.linear |
Linear algebra support.
|
Modifier and Type | Method and Description |
---|---|
ArrayFieldVector<T> |
ArrayFieldVector.add(ArrayFieldVector<T> v)
Compute the sum of
this and v . |
ArrayFieldVector<T> |
ArrayFieldVector.append(ArrayFieldVector<T> v)
Construct a vector by appending a vector to this vector.
|
ArrayFieldVector<T> |
ArrayFieldVector.ebeDivide(ArrayFieldVector<T> v)
Element-by-element division.
|
ArrayFieldVector<T> |
ArrayFieldVector.ebeMultiply(ArrayFieldVector<T> v)
Element-by-element multiplication.
|
ArrayFieldVector<T> |
ArrayFieldVector.projection(ArrayFieldVector<T> v)
Find the orthogonal projection of this vector onto another vector.
|
ArrayFieldVector<T> |
ArrayFieldVector.subtract(ArrayFieldVector<T> v)
Compute
this minus v . |
Modifier and Type | Method and Description |
---|---|
ArrayFieldVector<T> |
ArrayFieldVector.add(ArrayFieldVector<T> v)
Compute the sum of
this and v . |
ArrayFieldVector<T> |
ArrayFieldVector.append(ArrayFieldVector<T> v)
Construct a vector by appending a vector to this vector.
|
T |
ArrayFieldVector.dotProduct(ArrayFieldVector<T> v)
Compute the dot product.
|
ArrayFieldVector<T> |
ArrayFieldVector.ebeDivide(ArrayFieldVector<T> v)
Element-by-element division.
|
ArrayFieldVector<T> |
ArrayFieldVector.ebeMultiply(ArrayFieldVector<T> v)
Element-by-element multiplication.
|
FieldMatrix<T> |
ArrayFieldVector.outerProduct(ArrayFieldVector<T> v)
Compute the outer product.
|
ArrayFieldVector<T> |
ArrayFieldVector.projection(ArrayFieldVector<T> v)
Find the orthogonal projection of this vector onto another vector.
|
void |
ArrayFieldVector.set(int index,
ArrayFieldVector<T> v)
Set a set of consecutive elements.
|
ArrayFieldVector<T> |
ArrayFieldVector.subtract(ArrayFieldVector<T> v)
Compute
this minus v . |
Constructor and Description |
---|
ArrayFieldVector(ArrayFieldVector<T> v)
Construct a vector from another vector, using a deep copy.
|
ArrayFieldVector(ArrayFieldVector<T> v,
boolean deep)
Construct a vector from another vector.
|
Copyright © 2016-2021 CS GROUP. All rights reserved.