Package | Description |
---|---|
org.hipparchus.geometry.euclidean.threed |
This package provides basic 3D geometry components.
|
Modifier and Type | Method and Description |
---|---|
FieldVector3D<T> |
FieldVector3D.add(double factor,
FieldVector3D<T> v)
Add a scaled vector to the instance.
|
FieldVector3D<T> |
FieldVector3D.add(double factor,
Vector3D v)
Add a scaled vector to the instance.
|
FieldVector3D<T> |
FieldVector3D.add(FieldVector3D<T> v)
Add a vector to the instance.
|
FieldVector3D<T> |
FieldVector3D.add(T factor,
FieldVector3D<T> v)
Add a scaled vector to the instance.
|
FieldVector3D<T> |
FieldVector3D.add(T factor,
Vector3D v)
Add a scaled vector to the instance.
|
FieldVector3D<T> |
FieldVector3D.add(Vector3D v)
Add a vector to the instance.
|
FieldVector3D<T> |
FieldRotation.applyInverseTo(FieldVector3D<T> u)
Apply the inverse of the rotation to a vector.
|
static <T extends CalculusFieldElement<T>> |
FieldRotation.applyInverseTo(Rotation r,
FieldVector3D<T> u)
Apply the inverse of a rotation to a vector.
|
FieldVector3D<T> |
FieldRotation.applyInverseTo(Vector3D u)
Apply the inverse of the rotation to a vector.
|
FieldVector3D<T> |
FieldRotation.applyTo(FieldVector3D<T> u)
Apply the rotation to a vector.
|
static <T extends CalculusFieldElement<T>> |
FieldRotation.applyTo(Rotation r,
FieldVector3D<T> u)
Apply a rotation to a vector.
|
FieldVector3D<T> |
FieldRotation.applyTo(Vector3D u)
Apply the rotation to a vector.
|
FieldVector3D<T> |
FieldLine.closestPoint(FieldLine<T> line)
Compute the point of the instance closest to another line.
|
FieldVector3D<T> |
FieldVector3D.crossProduct(FieldVector3D<T> v)
Compute the cross-product of the instance with another vector.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.crossProduct(FieldVector3D<T> v1,
FieldVector3D<T> v2)
Compute the cross-product of two vectors.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.crossProduct(FieldVector3D<T> v1,
Vector3D v2)
Compute the cross-product of two vectors.
|
FieldVector3D<T> |
FieldVector3D.crossProduct(Vector3D v)
Compute the cross-product of the instance with another vector.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.crossProduct(Vector3D v1,
FieldVector3D<T> v2)
Compute the cross-product of two vectors.
|
FieldVector3D<T> |
FieldRotation.getAxis(RotationConvention convention)
Get the normalized axis of the rotation.
|
FieldVector3D<T> |
FieldLine.getDirection()
Get the normalized direction vector.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.getMinusI(Field<T> field)
Get opposite of the first canonical vector (coordinates: -1, 0, 0).
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.getMinusJ(Field<T> field)
Get opposite of the second canonical vector (coordinates: 0, -1, 0).
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.getMinusK(Field<T> field)
Get opposite of the third canonical vector (coordinates: 0, 0, -1).
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.getNaN(Field<T> field)
Get a vector with all coordinates set to NaN.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.getNegativeInfinity(Field<T> field)
Get a vector with all coordinates set to negative infinity.
|
FieldVector3D<T> |
FieldLine.getOrigin()
Get the line point closest to the origin.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.getPlusI(Field<T> field)
Get first canonical vector (coordinates: 1, 0, 0).
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.getPlusJ(Field<T> field)
Get second canonical vector (coordinates: 0, 1, 0).
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.getPlusK(Field<T> field)
Get third canonical vector (coordinates: 0, 0, 1).
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.getPositiveInfinity(Field<T> field)
Get a vector with all coordinates set to positive infinity.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.getZero(Field<T> field)
Get null vector (coordinates: 0, 0, 0).
|
FieldVector3D<T> |
FieldLine.intersection(FieldLine<T> line)
Get the intersection point of the instance and another line.
|
FieldVector3D<T> |
FieldVector3D.negate()
Get the opposite of the instance.
|
FieldVector3D<T> |
FieldVector3D.normalize()
Get a normalized vector aligned with the instance.
|
FieldVector3D<T> |
FieldVector3D.orthogonal()
Get a vector orthogonal to the instance.
|
FieldVector3D<T> |
FieldLine.pointAt(double abscissa)
Get one point from the line.
|
FieldVector3D<T> |
FieldLine.pointAt(T abscissa)
Get one point from the line.
|
FieldVector3D<T> |
FieldVector3D.scalarMultiply(double a)
Multiply the instance by a scalar.
|
FieldVector3D<T> |
FieldVector3D.scalarMultiply(T a)
Multiply the instance by a scalar.
|
FieldVector3D<T> |
FieldVector3D.subtract(double factor,
FieldVector3D<T> v)
Subtract a scaled vector from the instance.
|
FieldVector3D<T> |
FieldVector3D.subtract(double factor,
Vector3D v)
Subtract a scaled vector from the instance.
|
FieldVector3D<T> |
FieldVector3D.subtract(FieldVector3D<T> v)
Subtract a vector from the instance.
|
FieldVector3D<T> |
FieldVector3D.subtract(T factor,
FieldVector3D<T> v)
Subtract a scaled vector from the instance.
|
FieldVector3D<T> |
FieldVector3D.subtract(T factor,
Vector3D v)
Subtract a scaled vector from the instance.
|
FieldVector3D<T> |
FieldVector3D.subtract(Vector3D v)
Subtract a vector from the instance.
|
Modifier and Type | Method and Description |
---|---|
FieldVector3D<T> |
FieldVector3D.add(double factor,
FieldVector3D<T> v)
Add a scaled vector to the instance.
|
FieldVector3D<T> |
FieldVector3D.add(FieldVector3D<T> v)
Add a vector to the instance.
|
FieldVector3D<T> |
FieldVector3D.add(T factor,
FieldVector3D<T> v)
Add a scaled vector to the instance.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.angle(FieldVector3D<T> v1,
FieldVector3D<T> v2)
Compute the angular separation between two vectors.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.angle(FieldVector3D<T> v1,
FieldVector3D<T> v2)
Compute the angular separation between two vectors.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.angle(FieldVector3D<T> v1,
Vector3D v2)
Compute the angular separation between two vectors.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.angle(Vector3D v1,
FieldVector3D<T> v2)
Compute the angular separation between two vectors.
|
FieldVector3D<T> |
FieldRotation.applyInverseTo(FieldVector3D<T> u)
Apply the inverse of the rotation to a vector.
|
static <T extends CalculusFieldElement<T>> |
FieldRotation.applyInverseTo(Rotation r,
FieldVector3D<T> u)
Apply the inverse of a rotation to a vector.
|
FieldVector3D<T> |
FieldRotation.applyTo(FieldVector3D<T> u)
Apply the rotation to a vector.
|
static <T extends CalculusFieldElement<T>> |
FieldRotation.applyTo(Rotation r,
FieldVector3D<T> u)
Apply a rotation to a vector.
|
boolean |
FieldLine.contains(FieldVector3D<T> p)
Check if the instance contains a point.
|
FieldVector3D<T> |
FieldVector3D.crossProduct(FieldVector3D<T> v)
Compute the cross-product of the instance with another vector.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.crossProduct(FieldVector3D<T> v1,
FieldVector3D<T> v2)
Compute the cross-product of two vectors.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.crossProduct(FieldVector3D<T> v1,
FieldVector3D<T> v2)
Compute the cross-product of two vectors.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.crossProduct(FieldVector3D<T> v1,
Vector3D v2)
Compute the cross-product of two vectors.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.crossProduct(Vector3D v1,
FieldVector3D<T> v2)
Compute the cross-product of two vectors.
|
T |
FieldLine.distance(FieldVector3D<T> p)
Compute the distance between the instance and a point.
|
T |
FieldVector3D.distance(FieldVector3D<T> v)
Compute the distance between the instance and another vector according to the L2 norm.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.distance(FieldVector3D<T> v1,
FieldVector3D<T> v2)
Compute the distance between two vectors according to the L2 norm.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.distance(FieldVector3D<T> v1,
FieldVector3D<T> v2)
Compute the distance between two vectors according to the L2 norm.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.distance(FieldVector3D<T> v1,
Vector3D v2)
Compute the distance between two vectors according to the L2 norm.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.distance(Vector3D v1,
FieldVector3D<T> v2)
Compute the distance between two vectors according to the L2 norm.
|
T |
FieldVector3D.distance1(FieldVector3D<T> v)
Compute the distance between the instance and another vector according to the L1 norm.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.distance1(FieldVector3D<T> v1,
FieldVector3D<T> v2)
Compute the distance between two vectors according to the L1 norm.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.distance1(FieldVector3D<T> v1,
FieldVector3D<T> v2)
Compute the distance between two vectors according to the L1 norm.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.distance1(FieldVector3D<T> v1,
Vector3D v2)
Compute the distance between two vectors according to the L1 norm.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.distance1(Vector3D v1,
FieldVector3D<T> v2)
Compute the distance between two vectors according to the L1 norm.
|
T |
FieldVector3D.distanceInf(FieldVector3D<T> v)
Compute the distance between the instance and another vector according to the L∞ norm.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.distanceInf(FieldVector3D<T> v1,
FieldVector3D<T> v2)
Compute the distance between two vectors according to the L∞ norm.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.distanceInf(FieldVector3D<T> v1,
FieldVector3D<T> v2)
Compute the distance between two vectors according to the L∞ norm.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.distanceInf(FieldVector3D<T> v1,
Vector3D v2)
Compute the distance between two vectors according to the L∞ norm.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.distanceInf(Vector3D v1,
FieldVector3D<T> v2)
Compute the distance between two vectors according to the L∞ norm.
|
T |
FieldVector3D.distanceSq(FieldVector3D<T> v)
Compute the square of the distance between the instance and another vector.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.distanceSq(FieldVector3D<T> v1,
FieldVector3D<T> v2)
Compute the square of the distance between two vectors.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.distanceSq(FieldVector3D<T> v1,
FieldVector3D<T> v2)
Compute the square of the distance between two vectors.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.distanceSq(FieldVector3D<T> v1,
Vector3D v2)
Compute the square of the distance between two vectors.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.distanceSq(Vector3D v1,
FieldVector3D<T> v2)
Compute the square of the distance between two vectors.
|
T |
FieldVector3D.dotProduct(FieldVector3D<T> v)
Compute the dot-product of the instance and another vector.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.dotProduct(FieldVector3D<T> v1,
FieldVector3D<T> v2)
Compute the dot-product of two vectors.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.dotProduct(FieldVector3D<T> v1,
FieldVector3D<T> v2)
Compute the dot-product of two vectors.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.dotProduct(FieldVector3D<T> v1,
Vector3D v2)
Compute the dot-product of two vectors.
|
static <T extends CalculusFieldElement<T>> |
FieldVector3D.dotProduct(Vector3D v1,
FieldVector3D<T> v2)
Compute the dot-product of two vectors.
|
T |
FieldLine.getAbscissa(FieldVector3D<T> point)
Get the abscissa of a point with respect to the line.
|
void |
FieldLine.reset(FieldVector3D<T> p1,
FieldVector3D<T> p2)
Reset the instance as if built from two points.
|
void |
FieldLine.reset(FieldVector3D<T> p1,
FieldVector3D<T> p2)
Reset the instance as if built from two points.
|
FieldVector3D<T> |
FieldVector3D.subtract(double factor,
FieldVector3D<T> v)
Subtract a scaled vector from the instance.
|
FieldVector3D<T> |
FieldVector3D.subtract(FieldVector3D<T> v)
Subtract a vector from the instance.
|
FieldVector3D<T> |
FieldVector3D.subtract(T factor,
FieldVector3D<T> v)
Subtract a scaled vector from the instance.
|
Constructor and Description |
---|
FieldLine(FieldVector3D<T> p1,
FieldVector3D<T> p2,
double tolerance)
Build a line from two points.
|
FieldLine(FieldVector3D<T> p1,
FieldVector3D<T> p2,
double tolerance)
Build a line from two points.
|
FieldRotation(FieldVector3D<T> u,
FieldVector3D<T> v)
Build one of the rotations that transform one vector into another one.
|
FieldRotation(FieldVector3D<T> u,
FieldVector3D<T> v)
Build one of the rotations that transform one vector into another one.
|
FieldRotation(FieldVector3D<T> u1,
FieldVector3D<T> u2,
FieldVector3D<T> v1,
FieldVector3D<T> v2)
Build the rotation that transforms a pair of vectors into another pair.
|
FieldRotation(FieldVector3D<T> u1,
FieldVector3D<T> u2,
FieldVector3D<T> v1,
FieldVector3D<T> v2)
Build the rotation that transforms a pair of vectors into another pair.
|
FieldRotation(FieldVector3D<T> u1,
FieldVector3D<T> u2,
FieldVector3D<T> v1,
FieldVector3D<T> v2)
Build the rotation that transforms a pair of vectors into another pair.
|
FieldRotation(FieldVector3D<T> u1,
FieldVector3D<T> u2,
FieldVector3D<T> v1,
FieldVector3D<T> v2)
Build the rotation that transforms a pair of vectors into another pair.
|
FieldRotation(FieldVector3D<T> axis,
T angle,
RotationConvention convention)
Build a rotation from an axis and an angle.
|
FieldVector3D(double a,
FieldVector3D<T> u)
Multiplicative constructor.
|
FieldVector3D(double a1,
FieldVector3D<T> u1,
double a2,
FieldVector3D<T> u2)
Linear constructor.
|
FieldVector3D(double a1,
FieldVector3D<T> u1,
double a2,
FieldVector3D<T> u2)
Linear constructor.
|
FieldVector3D(double a1,
FieldVector3D<T> u1,
double a2,
FieldVector3D<T> u2,
double a3,
FieldVector3D<T> u3)
Linear constructor.
|
FieldVector3D(double a1,
FieldVector3D<T> u1,
double a2,
FieldVector3D<T> u2,
double a3,
FieldVector3D<T> u3)
Linear constructor.
|
FieldVector3D(double a1,
FieldVector3D<T> u1,
double a2,
FieldVector3D<T> u2,
double a3,
FieldVector3D<T> u3)
Linear constructor.
|
FieldVector3D(double a1,
FieldVector3D<T> u1,
double a2,
FieldVector3D<T> u2,
double a3,
FieldVector3D<T> u3,
double a4,
FieldVector3D<T> u4)
Linear constructor.
|
FieldVector3D(double a1,
FieldVector3D<T> u1,
double a2,
FieldVector3D<T> u2,
double a3,
FieldVector3D<T> u3,
double a4,
FieldVector3D<T> u4)
Linear constructor.
|
FieldVector3D(double a1,
FieldVector3D<T> u1,
double a2,
FieldVector3D<T> u2,
double a3,
FieldVector3D<T> u3,
double a4,
FieldVector3D<T> u4)
Linear constructor.
|
FieldVector3D(double a1,
FieldVector3D<T> u1,
double a2,
FieldVector3D<T> u2,
double a3,
FieldVector3D<T> u3,
double a4,
FieldVector3D<T> u4)
Linear constructor.
|
FieldVector3D(T a,
FieldVector3D<T> u)
Multiplicative constructor.
|
FieldVector3D(T a1,
FieldVector3D<T> u1,
T a2,
FieldVector3D<T> u2)
Linear constructor.
|
FieldVector3D(T a1,
FieldVector3D<T> u1,
T a2,
FieldVector3D<T> u2)
Linear constructor.
|
FieldVector3D(T a1,
FieldVector3D<T> u1,
T a2,
FieldVector3D<T> u2,
T a3,
FieldVector3D<T> u3)
Linear constructor.
|
FieldVector3D(T a1,
FieldVector3D<T> u1,
T a2,
FieldVector3D<T> u2,
T a3,
FieldVector3D<T> u3)
Linear constructor.
|
FieldVector3D(T a1,
FieldVector3D<T> u1,
T a2,
FieldVector3D<T> u2,
T a3,
FieldVector3D<T> u3)
Linear constructor.
|
FieldVector3D(T a1,
FieldVector3D<T> u1,
T a2,
FieldVector3D<T> u2,
T a3,
FieldVector3D<T> u3,
T a4,
FieldVector3D<T> u4)
Linear constructor.
|
FieldVector3D(T a1,
FieldVector3D<T> u1,
T a2,
FieldVector3D<T> u2,
T a3,
FieldVector3D<T> u3,
T a4,
FieldVector3D<T> u4)
Linear constructor.
|
FieldVector3D(T a1,
FieldVector3D<T> u1,
T a2,
FieldVector3D<T> u2,
T a3,
FieldVector3D<T> u3,
T a4,
FieldVector3D<T> u4)
Linear constructor.
|
FieldVector3D(T a1,
FieldVector3D<T> u1,
T a2,
FieldVector3D<T> u2,
T a3,
FieldVector3D<T> u3,
T a4,
FieldVector3D<T> u4)
Linear constructor.
|
Copyright © 2016-2021 CS GROUP. All rights reserved.