public abstract class BaseSecantSolver extends AbstractUnivariateSolver implements BracketedUnivariateSolver<UnivariateFunction>
Implementation of the Regula Falsi and
Illinois methods is based on the
following article: M. Dowell and P. Jarratt,
A modified regula falsi method for computing the root of an
equation, BIT Numerical Mathematics, volume 11, number 2,
pages 168-174, Springer, 1971.
Implementation of the Pegasus method is
based on the following article: M. Dowell and P. Jarratt,
The "Pegasus" method for computing the root of an equation,
BIT Numerical Mathematics, volume 12, number 4, pages 503-508, Springer,
1972.
The Secant method is not a
bracketing method, so it is not implemented here. It has a separate
implementation.
| Modifier and Type | Class and Description |
|---|---|
protected static class |
BaseSecantSolver.Method
Secant-based root-finding methods.
|
BracketedUnivariateSolver.Interval| Modifier and Type | Field and Description |
|---|---|
protected static double |
DEFAULT_ABSOLUTE_ACCURACY
Default absolute accuracy.
|
| Modifier | Constructor and Description |
|---|---|
protected |
BaseSecantSolver(double absoluteAccuracy,
BaseSecantSolver.Method method)
Construct a solver.
|
protected |
BaseSecantSolver(double relativeAccuracy,
double absoluteAccuracy,
BaseSecantSolver.Method method)
Construct a solver.
|
protected |
BaseSecantSolver(double relativeAccuracy,
double absoluteAccuracy,
double functionValueAccuracy,
BaseSecantSolver.Method method)
Construct a solver.
|
| Modifier and Type | Method and Description |
|---|---|
protected double |
doSolve()
Method for implementing actual optimization algorithms in derived
classes.
|
protected BracketedUnivariateSolver.Interval |
doSolveInterval()
Find a root and return the containing interval.
|
double |
solve(int maxEval,
UnivariateFunction f,
double min,
double max,
AllowedSolution allowedSolution)
Solve for a zero in the given interval.
|
double |
solve(int maxEval,
UnivariateFunction f,
double min,
double max,
double startValue)
Solve for a zero in the given interval, start at
startValue. |
double |
solve(int maxEval,
UnivariateFunction f,
double min,
double max,
double startValue,
AllowedSolution allowedSolution)
Solve for a zero in the given interval, start at
startValue. |
BracketedUnivariateSolver.Interval |
solveInterval(int maxEval,
UnivariateFunction f,
double min,
double max,
double startValue)
Solve for a zero in the given interval and return a tolerance interval surrounding
the root.
|
computeObjectiveValue, getAbsoluteAccuracy, getEvaluations, getFunctionValueAccuracy, getMax, getMaxEvaluations, getMin, getRelativeAccuracy, getStartValue, incrementEvaluationCount, isBracketing, isSequence, setup, solve, solve, verifyBracketing, verifyInterval, verifySequenceclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitsolveIntervalgetAbsoluteAccuracy, getEvaluations, getFunctionValueAccuracy, getMaxEvaluations, getRelativeAccuracy, solve, solveprotected static final double DEFAULT_ABSOLUTE_ACCURACY
protected BaseSecantSolver(double absoluteAccuracy,
BaseSecantSolver.Method method)
absoluteAccuracy - Absolute accuracy.method - Secant-based root-finding method to use.protected BaseSecantSolver(double relativeAccuracy,
double absoluteAccuracy,
BaseSecantSolver.Method method)
relativeAccuracy - Relative accuracy.absoluteAccuracy - Absolute accuracy.method - Secant-based root-finding method to use.protected BaseSecantSolver(double relativeAccuracy,
double absoluteAccuracy,
double functionValueAccuracy,
BaseSecantSolver.Method method)
relativeAccuracy - Maximum relative error.absoluteAccuracy - Maximum absolute error.functionValueAccuracy - Maximum function value error.method - Secant-based root-finding method to usepublic double solve(int maxEval,
UnivariateFunction f,
double min,
double max,
AllowedSolution allowedSolution)
solve in interface BracketedUnivariateSolver<UnivariateFunction>maxEval - Maximum number of evaluations.f - Function to solve.min - Lower bound for the interval.max - Upper bound for the interval.allowedSolution - The kind of solutions that the root-finding algorithm may
accept as solutions.public double solve(int maxEval,
UnivariateFunction f,
double min,
double max,
double startValue,
AllowedSolution allowedSolution)
startValue.
A solver may require that the interval brackets a single zero root.
Solvers that do require bracketing should be able to handle the case
where one of the endpoints is itself a root.solve in interface BracketedUnivariateSolver<UnivariateFunction>maxEval - Maximum number of evaluations.f - Function to solve.min - Lower bound for the interval.max - Upper bound for the interval.startValue - Start value to use.allowedSolution - The kind of solutions that the root-finding algorithm may
accept as solutions.public double solve(int maxEval,
UnivariateFunction f,
double min,
double max,
double startValue)
startValue.
A solver may require that the interval brackets a single zero root.
Solvers that do require bracketing should be able to handle the case
where one of the endpoints is itself a root.solve in interface BaseUnivariateSolver<UnivariateFunction>solve in class BaseAbstractUnivariateSolver<UnivariateFunction>maxEval - Maximum number of evaluations.f - Function to solve.min - Lower bound for the interval.max - Upper bound for the interval.startValue - Start value to use.public BracketedUnivariateSolver.Interval solveInterval(int maxEval, UnivariateFunction f, double min, double max, double startValue) throws MathIllegalArgumentException, MathIllegalStateException
It is required that the starting interval brackets a root or that the function value at either end point is 0.0.
solveInterval in interface BracketedUnivariateSolver<UnivariateFunction>maxEval - Maximum number of evaluations.f - Function to solve.min - Lower bound for the interval.max - Upper bound for the interval. Must be greater than min.startValue - start value to use. Must be in the interval [min, max].absolute
accuracy + max(ta, tb) * relative accuracy) or (
max(|f(ta)|, |f(tb)|) <= BaseUnivariateSolver.getFunctionValueAccuracy()) or there are no
floating point numbers between ta and tb. The width of the interval (tb - ta) may
be zero.MathIllegalArgumentException - if the arguments do not satisfy the
requirements specified by the solver.MathIllegalStateException - if the allowed number of evaluations is
exceeded.protected final double doSolve()
throws MathIllegalStateException
doSolve in class BaseAbstractUnivariateSolver<UnivariateFunction>MathIllegalStateException - if the algorithm failed due to finite
precision.protected final BracketedUnivariateSolver.Interval doSolveInterval() throws MathIllegalStateException
MathIllegalStateException - if convergence fails.Copyright © 2016-2021 CS GROUP. All rights reserved.