T - the type of the field elementspublic class FieldDerivativeStructure<T extends CalculusFieldElement<T>> extends Object implements FieldDerivative<T,FieldDerivativeStructure<T>>
This class is similar to DerivativeStructure except function
parameters and value can be any CalculusFieldElement.
Instances of this class are guaranteed to be immutable.
DerivativeStructure,
FDSFactory,
DSCompiler| Modifier and Type | Method and Description |
|---|---|
FieldDerivativeStructure<T> |
abs()
absolute value.
|
FieldDerivativeStructure<T> |
acos()
Arc cosine operation.
|
FieldDerivativeStructure<T> |
acosh()
Inverse hyperbolic cosine operation.
|
FieldDerivativeStructure<T> |
add(double a)
'+' operator.
|
FieldDerivativeStructure<T> |
add(FieldDerivativeStructure<T> a)
Compute this + a.
|
FieldDerivativeStructure<T> |
add(T a)
'+' operator.
|
FieldDerivativeStructure<T> |
asin()
Arc sine operation.
|
FieldDerivativeStructure<T> |
asinh()
Inverse hyperbolic sine operation.
|
FieldDerivativeStructure<T> |
atan()
Arc tangent operation.
|
FieldDerivativeStructure<T> |
atan2(FieldDerivativeStructure<T> x)
Two arguments arc tangent operation.
|
static <T extends CalculusFieldElement<T>> |
atan2(FieldDerivativeStructure<T> y,
FieldDerivativeStructure<T> x)
Two arguments arc tangent operation.
|
FieldDerivativeStructure<T> |
atanh()
Inverse hyperbolic tangent operation.
|
FieldDerivativeStructure<T> |
cbrt()
Cubic root.
|
FieldDerivativeStructure<T> |
ceil()
Get the smallest whole number larger than instance.
|
FieldDerivativeStructure<T> |
compose(double... f)
Compute composition of the instance by a univariate function.
|
FieldDerivativeStructure<T> |
compose(T... f)
Compute composition of the instance by a univariate function.
|
FieldDerivativeStructure<T> |
copySign(double sign)
Returns the instance with the sign of the argument.
|
FieldDerivativeStructure<T> |
copySign(FieldDerivativeStructure<T> sign)
Returns the instance with the sign of the argument.
|
FieldDerivativeStructure<T> |
copySign(T sign)
Returns the instance with the sign of the argument.
|
FieldDerivativeStructure<T> |
cos()
Cosine operation.
|
FieldDerivativeStructure<T> |
cosh()
Hyperbolic cosine operation.
|
FieldDerivativeStructure<T> |
divide(double a)
'÷' operator.
|
FieldDerivativeStructure<T> |
divide(FieldDerivativeStructure<T> a)
Compute this ÷ a.
|
FieldDerivativeStructure<T> |
divide(T a)
'÷' operator.
|
FieldDerivativeStructure<T> |
exp()
Exponential.
|
FieldDerivativeStructure<T> |
expm1()
Exponential minus 1.
|
FieldDerivativeStructure<T> |
floor()
Get the largest whole number smaller than instance.
|
T[] |
getAllDerivatives()
Get all partial derivatives.
|
int |
getExponent()
Return the exponent of the instance value, removing the bias.
|
FDSFactory<T> |
getFactory()
Get the factory that built the instance.
|
Field<FieldDerivativeStructure<T>> |
getField()
Get the
Field to which the instance belongs. |
int |
getFreeParameters()
Get the number of free parameters.
|
int |
getOrder()
Get the derivation order.
|
T |
getPartialDerivative(int... orders)
Get a partial derivative.
|
FieldDerivativeStructure<T> |
getPi()
Get the Archimedes constant π.
|
double |
getReal()
Get the real value of the number.
|
T |
getValue()
Get the value part of the derivative structure.
|
FieldDerivativeStructure<T> |
hypot(FieldDerivativeStructure<T> y)
Returns the hypotenuse of a triangle with sides
this and y
- sqrt(this2 +y2)
avoiding intermediate overflow or underflow. |
static <T extends CalculusFieldElement<T>> |
hypot(FieldDerivativeStructure<T> x,
FieldDerivativeStructure<T> y)
Returns the hypotenuse of a triangle with sides
x and y
- sqrt(x2 +y2)
avoiding intermediate overflow or underflow. |
FieldDerivativeStructure<T> |
linearCombination(double[] a,
FieldDerivativeStructure<T>[] b)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(double a1,
FieldDerivativeStructure<T> b1,
double a2,
FieldDerivativeStructure<T> b2)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(double a1,
FieldDerivativeStructure<T> b1,
double a2,
FieldDerivativeStructure<T> b2,
double a3,
FieldDerivativeStructure<T> b3)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(double a1,
FieldDerivativeStructure<T> b1,
double a2,
FieldDerivativeStructure<T> b2,
double a3,
FieldDerivativeStructure<T> b3,
double a4,
FieldDerivativeStructure<T> b4)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(FieldDerivativeStructure<T>[] a,
FieldDerivativeStructure<T>[] b)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(FieldDerivativeStructure<T> a1,
FieldDerivativeStructure<T> b1,
FieldDerivativeStructure<T> a2,
FieldDerivativeStructure<T> b2)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(FieldDerivativeStructure<T> a1,
FieldDerivativeStructure<T> b1,
FieldDerivativeStructure<T> a2,
FieldDerivativeStructure<T> b2,
FieldDerivativeStructure<T> a3,
FieldDerivativeStructure<T> b3)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(FieldDerivativeStructure<T> a1,
FieldDerivativeStructure<T> b1,
FieldDerivativeStructure<T> a2,
FieldDerivativeStructure<T> b2,
FieldDerivativeStructure<T> a3,
FieldDerivativeStructure<T> b3,
FieldDerivativeStructure<T> a4,
FieldDerivativeStructure<T> b4)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(T[] a,
FieldDerivativeStructure<T>[] b)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(T a1,
FieldDerivativeStructure<T> b1,
T a2,
FieldDerivativeStructure<T> b2)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(T a1,
FieldDerivativeStructure<T> b1,
T a2,
FieldDerivativeStructure<T> b2,
T a3,
FieldDerivativeStructure<T> b3)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(T a1,
FieldDerivativeStructure<T> b1,
T a2,
FieldDerivativeStructure<T> b2,
T a3,
FieldDerivativeStructure<T> b3,
T a4,
FieldDerivativeStructure<T> b4)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
log()
Natural logarithm.
|
FieldDerivativeStructure<T> |
log10()
Base 10 logarithm.
|
FieldDerivativeStructure<T> |
log1p()
Shifted natural logarithm.
|
FieldDerivativeStructure<T> |
multiply(double a)
'×' operator.
|
FieldDerivativeStructure<T> |
multiply(FieldDerivativeStructure<T> a)
Compute this × a.
|
FieldDerivativeStructure<T> |
multiply(int n)
Compute n × this.
|
FieldDerivativeStructure<T> |
multiply(T a)
'×' operator.
|
FieldDerivativeStructure<T> |
negate()
Returns the additive inverse of
this element. |
FieldDerivativeStructure<T> |
newInstance(double value)
Create an instance corresponding to a constant real value.
|
FieldDerivativeStructure<T> |
pow(double p)
Power operation.
|
static <T extends CalculusFieldElement<T>> |
pow(double a,
FieldDerivativeStructure<T> x)
Compute ax where a is a double and x a
FieldDerivativeStructure |
FieldDerivativeStructure<T> |
pow(FieldDerivativeStructure<T> e)
Power operation.
|
FieldDerivativeStructure<T> |
pow(int n)
Integer power operation.
|
FieldDerivativeStructure<T> |
reciprocal()
Returns the multiplicative inverse of
this element. |
FieldDerivativeStructure<T> |
remainder(double a)
IEEE remainder operator.
|
FieldDerivativeStructure<T> |
remainder(FieldDerivativeStructure<T> a)
IEEE remainder operator.
|
FieldDerivativeStructure<T> |
remainder(T a)
IEEE remainder operator.
|
FieldDerivativeStructure<T> |
rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.
|
FieldDerivativeStructure<T> |
rootN(int n)
Nth root.
|
FieldDerivativeStructure<T> |
scalb(int n)
Multiply the instance by a power of 2.
|
FieldDerivativeStructure<T> |
sign()
Compute the sign of the instance.
|
FieldDerivativeStructure<T> |
sin()
Sine operation.
|
FieldSinCos<FieldDerivativeStructure<T>> |
sinCos()
Combined Sine and Cosine operation.
|
FieldDerivativeStructure<T> |
sinh()
Hyperbolic sine operation.
|
FieldSinhCosh<FieldDerivativeStructure<T>> |
sinhCosh()
Combined hyperbolic sine and sosine operation.
|
FieldDerivativeStructure<T> |
sqrt()
Square root.
|
FieldDerivativeStructure<T> |
subtract(double a)
'-' operator.
|
FieldDerivativeStructure<T> |
subtract(FieldDerivativeStructure<T> a)
Compute this - a.
|
FieldDerivativeStructure<T> |
subtract(T a)
'-' operator.
|
FieldDerivativeStructure<T> |
tan()
Tangent operation.
|
FieldDerivativeStructure<T> |
tanh()
Hyperbolic tangent operation.
|
T |
taylor(double... delta)
Evaluate Taylor expansion of a derivative structure.
|
T |
taylor(T... delta)
Evaluate Taylor expansion of a derivative structure.
|
FieldDerivativeStructure<T> |
toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP
|
FieldDerivativeStructure<T> |
toRadians()
Convert degrees to radians, with error of less than 0.5 ULP
|
FieldDerivativeStructure<T> |
ulp()
Compute least significant bit (Unit in Last Position) for a number.
|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitisFinite, isInfinite, isNaN, norm, roundisZeropublic FieldDerivativeStructure<T> newInstance(double value)
newInstance in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>value - constant real valuepublic FDSFactory<T> getFactory()
public int getFreeParameters()
FieldDerivativegetFreeParameters in interface FieldDerivative<T extends CalculusFieldElement<T>,FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public int getOrder()
FieldDerivativegetOrder in interface FieldDerivative<T extends CalculusFieldElement<T>,FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public double getReal()
getReal in interface FieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public T getValue()
getValue in interface FieldDerivative<T extends CalculusFieldElement<T>,FieldDerivativeStructure<T extends CalculusFieldElement<T>>>getPartialDerivative(int...)public T getPartialDerivative(int... orders) throws MathIllegalArgumentException
getPartialDerivative in interface FieldDerivative<T extends CalculusFieldElement<T>,FieldDerivativeStructure<T extends CalculusFieldElement<T>>>orders - derivation orders with respect to each variable (if all orders are 0,
the value is returned)MathIllegalArgumentException - if the numbers of variables does not
match the instanceFieldDerivative.getValue()public T[] getAllDerivatives()
DSCompiler.getPartialDerivativeIndex(int...)public FieldDerivativeStructure<T> add(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> add(double a)
add in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> add(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
add in interface FieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a - element to addMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> subtract(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> subtract(double a)
subtract in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> subtract(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
subtract in interface FieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a - element to subtractMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> multiply(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> multiply(int n)
multiply in interface FieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>n - Number of times this must be added to itself.public FieldDerivativeStructure<T> multiply(double a)
multiply in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> multiply(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
multiply in interface FieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a - element to multiplyMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> divide(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> divide(double a)
divide in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> divide(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
divide in interface FieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a - element to divide byMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> remainder(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> remainder(double a)
remainder in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> remainder(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
remainder in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a - right hand side parameter of the operatorMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> negate()
this element.negate in interface FieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>this.public FieldDerivativeStructure<T> abs()
Just another name for CalculusFieldElement.norm()
abs in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> ceil()
ceil in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> floor()
floor in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> rint()
rint in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> sign()
sign in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> copySign(T sign)
sign argument is treated as positive.sign - the sign for the returned valuesign argumentpublic FieldDerivativeStructure<T> copySign(double sign)
sign argument is treated as positive.copySign in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>sign - the sign for the returned valuesign argumentpublic FieldDerivativeStructure<T> copySign(FieldDerivativeStructure<T> sign)
sign argument is treated as positive.copySign in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>sign - the sign for the returned valuesign argumentpublic int getExponent()
For double numbers of the form 2x, the unbiased exponent is exactly x.
getExponent in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> scalb(int n)
scalb in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>n - power of 2public FieldDerivativeStructure<T> ulp()
The ulp function is a step function, hence all its derivatives are 0.
ulp in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> hypot(FieldDerivativeStructure<T> y) throws MathIllegalArgumentException
this and y
- sqrt(this2 +y2)
avoiding intermediate overflow or underflow.
hypot in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>y - a valueMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic static <T extends CalculusFieldElement<T>> FieldDerivativeStructure<T> hypot(FieldDerivativeStructure<T> x, FieldDerivativeStructure<T> y) throws MathIllegalArgumentException
x and y
- sqrt(x2 +y2)
avoiding intermediate overflow or underflow.
T - the type of the field elementsx - a valuey - a valueMathIllegalArgumentException - if number of free parameters
or orders do not match@SafeVarargs public final FieldDerivativeStructure<T> compose(T... f) throws MathIllegalArgumentException
f - array of value and derivatives of the function at
the current point (i.e. [f(getValue()),
f'(getValue()), f''(getValue())...]).MathIllegalArgumentException - if the number of derivatives
in the array is not equal to order + 1public FieldDerivativeStructure<T> compose(double... f) throws MathIllegalArgumentException
f - array of value and derivatives of the function at
the current point (i.e. [f(getValue()),
f'(getValue()), f''(getValue())...]).MathIllegalArgumentException - if the number of derivatives
in the array is not equal to order + 1public FieldDerivativeStructure<T> reciprocal()
this element.reciprocal in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>reciprocal in interface FieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>this.public FieldDerivativeStructure<T> sqrt()
sqrt in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> cbrt()
cbrt in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> rootN(int n)
rootN in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>n - order of the rootpublic Field<FieldDerivativeStructure<T>> getField()
Field to which the instance belongs.getField in interface FieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>Field to which the instance belongspublic static <T extends CalculusFieldElement<T>> FieldDerivativeStructure<T> pow(double a, FieldDerivativeStructure<T> x)
FieldDerivativeStructureT - the type of the field elementsa - number to exponentiatex - power to applypublic FieldDerivativeStructure<T> pow(double p)
pow in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>p - power to applypublic FieldDerivativeStructure<T> pow(int n)
pow in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>n - power to applypublic FieldDerivativeStructure<T> pow(FieldDerivativeStructure<T> e) throws MathIllegalArgumentException
pow in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>e - exponentMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> exp()
exp in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> expm1()
expm1 in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> log()
log in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> log1p()
log1p in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> log10()
log10 in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> cos()
cos in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> sin()
sin in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldSinCos<FieldDerivativeStructure<T>> sinCos()
sinCos in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> tan()
tan in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> acos()
acos in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> asin()
asin in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> atan()
atan in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> atan2(FieldDerivativeStructure<T> x) throws MathIllegalArgumentException
Beware of the order or arguments! As this is based on a
two-arguments functions, in order to be consistent with
arguments order, the instance is the first argument
and the single provided argument is the second argument.
In order to be consistent with programming languages atan2,
this method computes atan2(this, x), i.e. the instance
represents the y argument and the x argument is
the one passed as a single argument. This may seem confusing especially
for users of Wolfram alpha, as this site is not consistent
with programming languages atan2 two-arguments arc tangent
and puts x as its first argument.
atan2 in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>x - second argument of the arc tangentMathIllegalArgumentException - if number of free parameters or orders are inconsistentpublic static <T extends CalculusFieldElement<T>> FieldDerivativeStructure<T> atan2(FieldDerivativeStructure<T> y, FieldDerivativeStructure<T> x) throws MathIllegalArgumentException
T - the type of the field elementsy - first argument of the arc tangentx - second argument of the arc tangentMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> cosh()
cosh in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> sinh()
sinh in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldSinhCosh<FieldDerivativeStructure<T>> sinhCosh()
sinhCosh in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> tanh()
tanh in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> acosh()
acosh in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> asinh()
asinh in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> atanh()
atanh in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> toDegrees()
toDegrees in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>public FieldDerivativeStructure<T> toRadians()
toRadians in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>@SafeVarargs public final T taylor(T... delta) throws MathRuntimeException
delta - parameters offsets (Δx, Δy, ...)MathRuntimeException - if factorials becomes too largepublic T taylor(double... delta) throws MathRuntimeException
delta - parameters offsets (Δx, Δy, ...)MathRuntimeException - if factorials becomes too largepublic FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T>[] a, FieldDerivativeStructure<T>[] b) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> linearCombination(T[] a, FieldDerivativeStructure<T>[] b) throws MathIllegalArgumentException
a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if arrays dimensions don't matchpublic FieldDerivativeStructure<T> linearCombination(double[] a, FieldDerivativeStructure<T>[] b) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termMathIllegalArgumentException - if number of free parameters
or orders do not matchCalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement),
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)public FieldDerivativeStructure<T> linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2) throws MathIllegalArgumentException
a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termMathIllegalArgumentException - if number of free parameters or orders are inconsistentlinearCombination(double, FieldDerivativeStructure, double, FieldDerivativeStructure),
linearCombination(double, FieldDerivativeStructure, double, FieldDerivativeStructure, double, FieldDerivativeStructure, double, FieldDerivativeStructure)public FieldDerivativeStructure<T> linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termMathIllegalArgumentException - if number of free parameters
or orders do not matchCalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement),
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)public FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termMathIllegalArgumentException - if number of free parameters
or orders do not matchCalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)public FieldDerivativeStructure<T> linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3) throws MathIllegalArgumentException
a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termMathIllegalArgumentException - if number of free parameters or orders are inconsistentlinearCombination(double, FieldDerivativeStructure, double, FieldDerivativeStructure),
linearCombination(double, FieldDerivativeStructure, double, FieldDerivativeStructure, double, FieldDerivativeStructure, double, FieldDerivativeStructure)public FieldDerivativeStructure<T> linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termMathIllegalArgumentException - if number of free parameters
or orders do not matchCalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement, double, FieldElement)public FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3, FieldDerivativeStructure<T> a4, FieldDerivativeStructure<T> b4) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the fourth termb4 - second factor of the fourth termMathIllegalArgumentException - if number of free parameters
or orders do not matchCalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement),
CalculusFieldElement.linearCombination(FieldElement, FieldElement, FieldElement, FieldElement, FieldElement, FieldElement)public FieldDerivativeStructure<T> linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3, T a4, FieldDerivativeStructure<T> b4) throws MathIllegalArgumentException
a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the third termb4 - second factor of the third termMathIllegalArgumentException - if number of free parameters or orders are inconsistentlinearCombination(double, FieldDerivativeStructure, double, FieldDerivativeStructure),
linearCombination(double, FieldDerivativeStructure, double, FieldDerivativeStructure, double, FieldDerivativeStructure)public FieldDerivativeStructure<T> linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3, double a4, FieldDerivativeStructure<T> b4) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the fourth termb4 - second factor of the fourth termMathIllegalArgumentException - if number of free parameters
or orders do not matchCalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement),
CalculusFieldElement.linearCombination(double, FieldElement, double, FieldElement, double, FieldElement)public FieldDerivativeStructure<T> getPi()
Archimedes constant is the ratio of a circle's circumference to its diameter.
getPi in interface CalculusFieldElement<FieldDerivativeStructure<T extends CalculusFieldElement<T>>>Copyright © 2016-2021 CS GROUP. All rights reserved.