Package | Description |
---|---|
org.hipparchus.analysis |
Parent package for common numerical analysis procedures, including root finding,
function interpolation and integration.
|
org.hipparchus.analysis.differentiation |
This package holds the main interfaces and basic building block classes
dealing with differentiation.
|
org.hipparchus.fitting |
Classes to perform curve fitting.
|
org.hipparchus.optim.nonlinear.scalar |
Algorithms for optimizing a scalar function.
|
org.hipparchus.optim.nonlinear.vector.leastsquares |
This package provides algorithms that minimize the residuals
between observations and model values.
|
Modifier and Type | Method and Description |
---|---|
static MultivariateDifferentiableFunction |
FunctionUtils.toDifferentiable(MultivariateFunction f,
MultivariateVectorFunction gradient)
Convert regular functions to
MultivariateDifferentiableFunction . |
Modifier and Type | Interface and Description |
---|---|
interface |
MultivariateDifferentiableVectorFunction
Extension of
MultivariateVectorFunction representing a
multivariate differentiable vectorial function. |
Modifier and Type | Class and Description |
---|---|
class |
GradientFunction
Class representing the gradient of a multivariate function.
|
Modifier and Type | Method and Description |
---|---|
MultivariateVectorFunction |
AbstractCurveFitter.TheoreticalValuesFunction.getModelFunction() |
Modifier and Type | Method and Description |
---|---|
MultivariateVectorFunction |
ObjectiveFunctionGradient.getObjectiveFunctionGradient()
Gets the gradient of the function to be optimized.
|
Constructor and Description |
---|
LeastSquaresConverter(MultivariateVectorFunction function,
double[] observations)
Builds a simple converter for uncorrelated residuals with identical
weights.
|
LeastSquaresConverter(MultivariateVectorFunction function,
double[] observations,
double[] weights)
Builds a simple converter for uncorrelated residuals with the
specified weights.
|
LeastSquaresConverter(MultivariateVectorFunction function,
double[] observations,
RealMatrix scale)
Builds a simple converter for correlated residuals with the
specified weights.
|
ObjectiveFunctionGradient(MultivariateVectorFunction g) |
Modifier and Type | Method and Description |
---|---|
static LeastSquaresProblem |
LeastSquaresFactory.create(MultivariateVectorFunction model,
MultivariateMatrixFunction jacobian,
double[] observed,
double[] start,
RealMatrix weight,
ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
int maxEvaluations,
int maxIterations)
Create a
LeastSquaresProblem
from the given elements. |
LeastSquaresBuilder |
LeastSquaresBuilder.model(MultivariateVectorFunction value,
MultivariateMatrixFunction jacobian)
Configure the model function.
|
static MultivariateJacobianFunction |
LeastSquaresFactory.model(MultivariateVectorFunction value,
MultivariateMatrixFunction jacobian)
Combine a
MultivariateVectorFunction with a MultivariateMatrixFunction to produce a MultivariateJacobianFunction . |
Copyright © 2016-2021 CS GROUP. All rights reserved.