T
- the type of the field elementspublic class FieldTuple<T extends RealFieldElement<T>> extends Object implements RealFieldElement<FieldTuple<T>>
DEG_TO_RAD, RAD_TO_DEG
Constructor and Description |
---|
FieldTuple(T... x)
Creates a new instance from its components.
|
Modifier and Type | Method and Description |
---|---|
FieldTuple<T> |
abs()
absolute value.
|
FieldTuple<T> |
acos()
Arc cosine operation.
|
FieldTuple<T> |
acosh()
Inverse hyperbolic cosine operation.
|
FieldTuple<T> |
add(double a)
'+' operator.
|
FieldTuple<T> |
add(FieldTuple<T> a)
Compute this + a.
|
FieldTuple<T> |
asin()
Arc sine operation.
|
FieldTuple<T> |
asinh()
Inverse hyperbolic sine operation.
|
FieldTuple<T> |
atan()
Arc tangent operation.
|
FieldTuple<T> |
atan2(FieldTuple<T> x)
Two arguments arc tangent operation.
|
FieldTuple<T> |
atanh()
Inverse hyperbolic tangent operation.
|
FieldTuple<T> |
cbrt()
Cubic root.
|
FieldTuple<T> |
ceil()
Get the smallest whole number larger than instance.
|
FieldTuple<T> |
copySign(double sign)
Returns the instance with the sign of the argument.
|
FieldTuple<T> |
copySign(FieldTuple<T> sign)
Returns the instance with the sign of the argument.
|
FieldTuple<T> |
cos()
Cosine operation.
|
FieldTuple<T> |
cosh()
Hyperbolic cosine operation.
|
FieldTuple<T> |
divide(double a)
'÷' operator.
|
FieldTuple<T> |
divide(FieldTuple<T> a)
Compute this ÷ a.
|
boolean |
equals(Object obj) |
FieldTuple<T> |
exp()
Exponential.
|
FieldTuple<T> |
expm1()
Exponential minus 1.
|
FieldTuple<T> |
floor()
Get the largest whole number smaller than instance.
|
T |
getComponent(int index)
Get one component of the tuple.
|
T[] |
getComponents()
Get all components of the tuple.
|
int |
getDimension()
Get the dimension of the tuple.
|
Field<FieldTuple<T>> |
getField()
Get the
Field to which the instance belongs. |
double |
getReal()
Get the real value of the number.
|
int |
hashCode() |
FieldTuple<T> |
hypot(FieldTuple<T> y)
Returns the hypotenuse of a triangle with sides
this and y
- sqrt(this2 +y2)
avoiding intermediate overflow or underflow. |
FieldTuple<T> |
linearCombination(double[] a,
FieldTuple<T>[] b)
Compute a linear combination.
|
FieldTuple<T> |
linearCombination(double a1,
FieldTuple<T> b1,
double a2,
FieldTuple<T> b2)
Compute a linear combination.
|
FieldTuple<T> |
linearCombination(double a1,
FieldTuple<T> b1,
double a2,
FieldTuple<T> b2,
double a3,
FieldTuple<T> b3)
Compute a linear combination.
|
FieldTuple<T> |
linearCombination(double a1,
FieldTuple<T> b1,
double a2,
FieldTuple<T> b2,
double a3,
FieldTuple<T> b3,
double a4,
FieldTuple<T> b4)
Compute a linear combination.
|
FieldTuple<T> |
linearCombination(FieldTuple<T>[] a,
FieldTuple<T>[] b)
Compute a linear combination.
|
FieldTuple<T> |
linearCombination(FieldTuple<T> a1,
FieldTuple<T> b1,
FieldTuple<T> a2,
FieldTuple<T> b2)
Compute a linear combination.
|
FieldTuple<T> |
linearCombination(FieldTuple<T> a1,
FieldTuple<T> b1,
FieldTuple<T> a2,
FieldTuple<T> b2,
FieldTuple<T> a3,
FieldTuple<T> b3)
Compute a linear combination.
|
FieldTuple<T> |
linearCombination(FieldTuple<T> a1,
FieldTuple<T> b1,
FieldTuple<T> a2,
FieldTuple<T> b2,
FieldTuple<T> a3,
FieldTuple<T> b3,
FieldTuple<T> a4,
FieldTuple<T> b4)
Compute a linear combination.
|
FieldTuple<T> |
log()
Natural logarithm.
|
FieldTuple<T> |
log10()
Base 10 logarithm.
|
FieldTuple<T> |
log1p()
Shifted natural logarithm.
|
FieldTuple<T> |
multiply(double a)
'×' operator.
|
FieldTuple<T> |
multiply(FieldTuple<T> a)
Compute this × a.
|
FieldTuple<T> |
multiply(int n)
Compute n × this.
|
FieldTuple<T> |
negate()
Returns the additive inverse of
this element. |
FieldTuple<T> |
newInstance(double value)
Create an instance corresponding to a constant real value.
|
FieldTuple<T> |
pow(double p)
Power operation.
|
FieldTuple<T> |
pow(FieldTuple<T> e)
Power operation.
|
FieldTuple<T> |
pow(int n)
Integer power operation.
|
FieldTuple<T> |
reciprocal()
Returns the multiplicative inverse of
this element. |
FieldTuple<T> |
remainder(double a)
IEEE remainder operator.
|
FieldTuple<T> |
remainder(FieldTuple<T> a)
IEEE remainder operator.
|
FieldTuple<T> |
rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.
|
FieldTuple<T> |
rootN(int n)
Nth root.
|
FieldTuple<T> |
scalb(int n)
Multiply the instance by a power of 2.
|
FieldTuple<T> |
signum()
Compute the signum of the instance.
|
FieldTuple<T> |
sin()
Sine operation.
|
FieldSinCos<FieldTuple<T>> |
sinCos()
Combined Sine and Cosine operation.
|
FieldTuple<T> |
sinh()
Hyperbolic sine operation.
|
FieldTuple<T> |
sqrt()
Square root.
|
FieldTuple<T> |
subtract(double a)
'-' operator.
|
FieldTuple<T> |
subtract(FieldTuple<T> a)
Compute this - a.
|
FieldTuple<T> |
tan()
Tangent operation.
|
FieldTuple<T> |
tanh()
Hyperbolic tangent operation.
|
FieldTuple<T> |
toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP
|
FieldTuple<T> |
toRadians()
Convert degrees to radians, with error of less than 0.5 ULP
|
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait
round
getExponent, isInfinite, isNaN
isZero
@SafeVarargs public FieldTuple(T... x)
x
- components of the tuplepublic FieldTuple<T> newInstance(double value)
The default implementation creates the instance by adding
the value to getField().getZero()
. This is not optimal
and does not work when called with a negative zero as the
sign of zero is lost with the addition. The default implementation
should therefore be overridden in concrete classes. The default
implementation will be removed at the next major version.
newInstance
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
value
- constant real valuepublic int getDimension()
public T getComponent(int index)
index
- index of the component, between 0 and getDimension()
- 1public T[] getComponents()
public Field<FieldTuple<T>> getField()
Field
to which the instance belongs.getField
in interface FieldElement<FieldTuple<T extends RealFieldElement<T>>>
Field
to which the instance belongspublic FieldTuple<T> add(FieldTuple<T> a)
add
in interface FieldElement<FieldTuple<T extends RealFieldElement<T>>>
a
- element to addpublic FieldTuple<T> subtract(FieldTuple<T> a)
subtract
in interface FieldElement<FieldTuple<T extends RealFieldElement<T>>>
a
- element to subtractpublic FieldTuple<T> negate()
this
element.negate
in interface FieldElement<FieldTuple<T extends RealFieldElement<T>>>
this
.public FieldTuple<T> multiply(FieldTuple<T> a)
multiply
in interface FieldElement<FieldTuple<T extends RealFieldElement<T>>>
a
- element to multiplypublic FieldTuple<T> multiply(int n)
multiply
in interface FieldElement<FieldTuple<T extends RealFieldElement<T>>>
n
- Number of times this
must be added to itself.public FieldTuple<T> divide(FieldTuple<T> a)
divide
in interface FieldElement<FieldTuple<T extends RealFieldElement<T>>>
a
- element to divide bypublic FieldTuple<T> reciprocal()
this
element.reciprocal
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
reciprocal
in interface FieldElement<FieldTuple<T extends RealFieldElement<T>>>
this
.public double getReal()
getReal
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> add(double a)
add
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
a
- right hand side parameter of the operatorpublic FieldTuple<T> subtract(double a)
subtract
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
a
- right hand side parameter of the operatorpublic FieldTuple<T> multiply(double a)
multiply
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
a
- right hand side parameter of the operatorpublic FieldTuple<T> divide(double a)
divide
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
a
- right hand side parameter of the operatorpublic FieldTuple<T> remainder(double a)
remainder
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
a
- right hand side parameter of the operatorpublic FieldTuple<T> remainder(FieldTuple<T> a)
remainder
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
a
- right hand side parameter of the operatorpublic FieldTuple<T> abs()
abs
in interface RealFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> ceil()
ceil
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> floor()
floor
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> rint()
rint
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> signum()
signum
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> copySign(FieldTuple<T> sign)
sign
argument is treated as positive.copySign
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
sign
- the sign for the returned valuesign
argumentpublic FieldTuple<T> copySign(double sign)
sign
argument is treated as positive.copySign
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
sign
- the sign for the returned valuesign
argumentpublic FieldTuple<T> scalb(int n)
scalb
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
n
- power of 2public FieldTuple<T> hypot(FieldTuple<T> y)
this
and y
- sqrt(this2 +y2)
avoiding intermediate overflow or underflow.
hypot
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
y
- a valuepublic FieldTuple<T> sqrt()
sqrt
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> cbrt()
cbrt
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> rootN(int n)
rootN
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
n
- order of the rootpublic FieldTuple<T> pow(double p)
pow
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
p
- power to applypublic FieldTuple<T> pow(int n)
pow
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
n
- power to applypublic FieldTuple<T> pow(FieldTuple<T> e)
pow
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
e
- exponentpublic FieldTuple<T> exp()
exp
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> expm1()
expm1
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> log()
log
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> log1p()
log1p
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> log10()
log10
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> cos()
cos
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> sin()
sin
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldSinCos<FieldTuple<T>> sinCos()
sinCos
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> tan()
tan
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> acos()
acos
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> asin()
asin
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> atan()
atan
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> atan2(FieldTuple<T> x)
atan2
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
x
- second argument of the arc tangentpublic FieldTuple<T> cosh()
cosh
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> sinh()
sinh
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> tanh()
tanh
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> acosh()
acosh
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> asinh()
asinh
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> atanh()
atanh
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> toDegrees()
toDegrees
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> toRadians()
toRadians
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
public FieldTuple<T> linearCombination(FieldTuple<T>[] a, FieldTuple<T>[] b) throws MathIllegalArgumentException
linearCombination
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
a
- Factors.b
- Factors.Σi ai bi
.MathIllegalArgumentException
- if arrays dimensions don't matchpublic FieldTuple<T> linearCombination(double[] a, FieldTuple<T>[] b) throws MathIllegalArgumentException
linearCombination
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
a
- Factors.b
- Factors.Σi ai bi
.MathIllegalArgumentException
- if arrays dimensions don't matchpublic FieldTuple<T> linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2)
linearCombination
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second termCalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object)
,
CalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)
public FieldTuple<T> linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2)
linearCombination
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second termCalculusFieldElement.linearCombination(double, Object, double, Object, double, Object)
,
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)
public FieldTuple<T> linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2, FieldTuple<T> a3, FieldTuple<T> b3)
linearCombination
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third termCalculusFieldElement.linearCombination(Object, Object, Object, Object)
,
CalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)
public FieldTuple<T> linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2, double a3, FieldTuple<T> b3)
linearCombination
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third termCalculusFieldElement.linearCombination(double, Object, double, Object)
,
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)
public FieldTuple<T> linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2, FieldTuple<T> a3, FieldTuple<T> b3, FieldTuple<T> a4, FieldTuple<T> b4)
linearCombination
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth termCalculusFieldElement.linearCombination(Object, Object, Object, Object)
,
CalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object)
public FieldTuple<T> linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2, double a3, FieldTuple<T> b3, double a4, FieldTuple<T> b4)
linearCombination
in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>
a1
- first factor of the first termb1
- second factor of the first terma2
- first factor of the second termb2
- second factor of the second terma3
- first factor of the third termb3
- second factor of the third terma4
- first factor of the fourth termb4
- second factor of the fourth termCalculusFieldElement.linearCombination(double, Object, double, Object)
,
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object)
Copyright © 2016–2020 Hipparchus.org. All rights reserved.