public class Covariance extends Object
The constructors that take RealMatrix
or double[][]
arguments generate covariance matrices. The columns of the input
matrices are assumed to represent variable values.
The constructor argument biasCorrected
determines whether or
not computed covariances are bias-corrected.
Unbiased covariances are given by the formula:
cov(X, Y) = Σ[(xi - E(X))(yi - E(Y))] / (n - 1)
where E(X)
is the mean of X
and E(Y)
is the mean of the Y
values.
Non-bias-corrected estimates use n
in place of n - 1
.
Constructor and Description |
---|
Covariance()
Create a Covariance with no data.
|
Covariance(double[][] data)
Create a Covariance matrix from a rectangular array
whose columns represent covariates.
|
Covariance(double[][] data,
boolean biasCorrected)
Create a Covariance matrix from a rectangular array
whose columns represent covariates.
|
Covariance(RealMatrix matrix)
Create a covariance matrix from a matrix whose columns
represent covariates.
|
Covariance(RealMatrix matrix,
boolean biasCorrected)
Create a covariance matrix from a matrix whose columns
represent covariates.
|
Modifier and Type | Method and Description |
---|---|
protected RealMatrix |
computeCovarianceMatrix(double[][] data)
Create a covariance matrix from a rectangular array whose columns represent
covariates.
|
protected RealMatrix |
computeCovarianceMatrix(double[][] data,
boolean biasCorrected)
Compute a covariance matrix from a rectangular array whose columns represent covariates.
|
protected RealMatrix |
computeCovarianceMatrix(RealMatrix matrix)
Create a covariance matrix from a matrix whose columns represent
covariates.
|
protected RealMatrix |
computeCovarianceMatrix(RealMatrix matrix,
boolean biasCorrected)
Compute a covariance matrix from a matrix whose columns represent covariates.
|
double |
covariance(double[] xArray,
double[] yArray)
Computes the covariance between the two arrays, using the bias-corrected
formula.
|
double |
covariance(double[] xArray,
double[] yArray,
boolean biasCorrected)
Computes the covariance between the two arrays.
|
RealMatrix |
getCovarianceMatrix()
Returns the covariance matrix
|
int |
getN()
Returns the number of observations (length of covariate vectors)
|
public Covariance()
public Covariance(double[][] data, boolean biasCorrected) throws MathIllegalArgumentException
The biasCorrected
parameter determines whether or not
covariance estimates are bias-corrected.
The input array must be rectangular with at least one column and two rows.
data
- rectangular array with columns representing covariatesbiasCorrected
- true means covariances are bias-correctedMathIllegalArgumentException
- if the input data array is not
rectangular with at least two rows and one column.MathIllegalArgumentException
- if the input data array is not
rectangular with at least one row and one column.public Covariance(double[][] data) throws MathIllegalArgumentException
The input array must be rectangular with at least one column and two rows.
data
- rectangular array with columns representing covariatesMathIllegalArgumentException
- if the input data array is not
rectangular with at least two rows and one column.MathIllegalArgumentException
- if the input data array is not
rectangular with at least one row and one column.public Covariance(RealMatrix matrix, boolean biasCorrected) throws MathIllegalArgumentException
The biasCorrected
parameter determines whether or not
covariance estimates are bias-corrected.
The matrix must have at least one column and two rows.
matrix
- matrix with columns representing covariatesbiasCorrected
- true means covariances are bias-correctedMathIllegalArgumentException
- if the input matrix does not have
at least two rows and one columnpublic Covariance(RealMatrix matrix) throws MathIllegalArgumentException
The matrix must have at least one column and two rows.
matrix
- matrix with columns representing covariatesMathIllegalArgumentException
- if the input matrix does not have
at least two rows and one columnpublic RealMatrix getCovarianceMatrix()
public int getN()
protected RealMatrix computeCovarianceMatrix(RealMatrix matrix, boolean biasCorrected) throws MathIllegalArgumentException
matrix
- input matrix (must have at least one column and two rows)biasCorrected
- determines whether or not covariance estimates are bias-correctedMathIllegalArgumentException
- if the matrix does not contain sufficient dataprotected RealMatrix computeCovarianceMatrix(RealMatrix matrix) throws MathIllegalArgumentException
matrix
- input matrix (must have at least one column and two rows)MathIllegalArgumentException
- if matrix does not contain sufficient dataCovariance(org.hipparchus.linear.RealMatrix)
protected RealMatrix computeCovarianceMatrix(double[][] data, boolean biasCorrected) throws MathIllegalArgumentException
data
- input array (must have at least one column and two rows)biasCorrected
- determines whether or not covariance estimates are bias-correctedMathIllegalArgumentException
- if the data array does not contain sufficient dataMathIllegalArgumentException
- if the input data array is not
rectangular with at least one row and one column.protected RealMatrix computeCovarianceMatrix(double[][] data) throws MathIllegalArgumentException
data
- input array (must have at least one column and two rows)MathIllegalArgumentException
- if the data array does not contain sufficient dataMathIllegalArgumentException
- if the input data array is not
rectangular with at least one row and one column.Covariance(org.hipparchus.linear.RealMatrix)
public double covariance(double[] xArray, double[] yArray, boolean biasCorrected) throws MathIllegalArgumentException
Array lengths must match and the common length must be at least 2.
xArray
- first data arrayyArray
- second data arraybiasCorrected
- if true, returned value will be bias-correctedMathIllegalArgumentException
- if the arrays lengths do not match or
there is insufficient datapublic double covariance(double[] xArray, double[] yArray) throws MathIllegalArgumentException
Array lengths must match and the common length must be at least 2.
xArray
- first data arrayyArray
- second data arrayMathIllegalArgumentException
- if the arrays lengths do not match or
there is insufficient dataCopyright © 2016–2020 Hipparchus.org. All rights reserved.