| Package | Description | 
|---|---|
| org.hipparchus.geometry.euclidean.threed | 
 
 This package provides basic 3D geometry components. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static Euclidean3D | 
Euclidean3D.getInstance()
Get the unique instance. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
EnclosingBall<Euclidean3D,Vector3D> | 
SphereGenerator.ballOnSupport(List<Vector3D> support)
Create a ball whose boundary lies on prescribed support points. 
 | 
protected AbstractSubHyperplane<Euclidean3D,Euclidean2D> | 
SubPlane.buildNew(Hyperplane<Euclidean3D> hyperplane,
        Region<Euclidean2D> remainingRegion)
Build a sub-hyperplane from an hyperplane and a region. 
 | 
SubHyperplane<Euclidean3D> | 
PolyhedronsSet.firstIntersection(Vector3D point,
                 Line line)
Get the first sub-hyperplane crossed by a semi-infinite line. 
 | 
Point<Euclidean3D> | 
Plane.project(Point<Euclidean3D> point)
Project a point to the hyperplane. 
 | 
SubHyperplane.SplitSubHyperplane<Euclidean3D> | 
SubPlane.split(Hyperplane<Euclidean3D> hyperplane)
Split the instance in two parts by an hyperplane. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Vector3D | 
Vector3D.add(double factor,
   Vector<Euclidean3D> v)
Add a scaled vector to the instance. 
 | 
Vector3D | 
Vector3D.add(Vector<Euclidean3D> v)
Add a vector to the instance. 
 | 
PolyhedronsSet | 
PolyhedronsSet.buildNew(BSPTree<Euclidean3D> tree)
Build a region using the instance as a prototype. 
 | 
protected AbstractSubHyperplane<Euclidean3D,Euclidean2D> | 
SubPlane.buildNew(Hyperplane<Euclidean3D> hyperplane,
        Region<Euclidean2D> remainingRegion)
Build a sub-hyperplane from an hyperplane and a region. 
 | 
Vector3D | 
Vector3D.crossProduct(Vector<Euclidean3D> v)
Compute the cross-product of the instance with another vector. 
 | 
double | 
Vector3D.distance(Point<Euclidean3D> v)
Compute the distance between the instance and another point. 
 | 
double | 
Vector3D.distance1(Vector<Euclidean3D> v)
Compute the distance between the instance and another vector according to the L1 norm. 
 | 
double | 
Vector3D.distanceInf(Vector<Euclidean3D> v)
Compute the distance between the instance and another vector according to the L∞ norm. 
 | 
double | 
Vector3D.distanceSq(Vector<Euclidean3D> v)
Compute the square of the distance between the instance and another vector. 
 | 
double | 
Vector3D.dotProduct(Vector<Euclidean3D> v)
Compute the dot-product of the instance and another vector. 
 | 
StringBuffer | 
Vector3DFormat.format(Vector<Euclidean3D> vector,
      StringBuffer toAppendTo,
      FieldPosition pos)
Formats a  
Vector3D object to produce a string. | 
double | 
Plane.getOffset(Point<Euclidean3D> point)
Get the offset (oriented distance) of a point. 
 | 
double | 
Plane.getOffset(Vector<Euclidean3D> vector)
Get the offset (oriented distance) of a vector. 
 | 
Point<Euclidean3D> | 
Plane.project(Point<Euclidean3D> point)
Project a point to the hyperplane. 
 | 
boolean | 
Plane.sameOrientationAs(Hyperplane<Euclidean3D> other)
Check if the instance has the same orientation as another hyperplane. 
 | 
SubHyperplane.SplitSubHyperplane<Euclidean3D> | 
SubPlane.split(Hyperplane<Euclidean3D> hyperplane)
Split the instance in two parts by an hyperplane. 
 | 
Vector3D | 
Vector3D.subtract(double factor,
        Vector<Euclidean3D> v)
Subtract a scaled vector from the instance. 
 | 
Vector3D | 
Vector3D.subtract(Vector<Euclidean3D> v)
Subtract a vector from the instance. 
 | 
Vector1D | 
Line.toSubSpace(Point<Euclidean3D> point)
Transform a space point into a sub-space point. 
 | 
Vector2D | 
Plane.toSubSpace(Point<Euclidean3D> point)
Transform a 3D space point into an in-plane point. 
 | 
Vector1D | 
Line.toSubSpace(Vector<Euclidean3D> vector)
Transform a space point into a sub-space point. 
 | 
Vector2D | 
Plane.toSubSpace(Vector<Euclidean3D> vector)
Transform a space point into a sub-space point. 
 | 
| Constructor and Description | 
|---|
PolyhedronsSet(BSPTree<Euclidean3D> tree,
              double tolerance)
Build a polyhedrons set from a BSP tree. 
 | 
PolyhedronsSet(Collection<SubHyperplane<Euclidean3D>> boundary,
              double tolerance)
Build a polyhedrons set from a Boundary REPresentation (B-rep) specified by sub-hyperplanes. 
 | 
SubPlane(Hyperplane<Euclidean3D> hyperplane,
        Region<Euclidean2D> remainingRegion)
Simple constructor. 
 | 
Copyright © 2016–2020 Hipparchus.org. All rights reserved.