public class BracketingNthOrderBrentSolver extends AbstractUnivariateSolver implements BracketedUnivariateSolver<UnivariateFunction>
The changes with respect to the original Brent algorithm are:
AllowedSolution
,The given interval must bracket the root.
BracketedUnivariateSolver.Interval
Constructor and Description |
---|
BracketingNthOrderBrentSolver()
Construct a solver with default accuracy and maximal order (1e-6 and 5 respectively)
|
BracketingNthOrderBrentSolver(double relativeAccuracy,
double absoluteAccuracy,
double functionValueAccuracy,
int maximalOrder)
Construct a solver.
|
BracketingNthOrderBrentSolver(double relativeAccuracy,
double absoluteAccuracy,
int maximalOrder)
Construct a solver.
|
BracketingNthOrderBrentSolver(double absoluteAccuracy,
int maximalOrder)
Construct a solver.
|
Modifier and Type | Method and Description |
---|---|
protected double |
doSolve()
Method for implementing actual optimization algorithms in derived
classes.
|
protected BracketedUnivariateSolver.Interval |
doSolveInterval()
Find a root and return the containing interval.
|
int |
getMaximalOrder()
Get the maximal order.
|
double |
solve(int maxEval,
UnivariateFunction f,
double min,
double max,
AllowedSolution allowedSolution)
Solve for a zero in the given interval.
|
double |
solve(int maxEval,
UnivariateFunction f,
double min,
double max,
double startValue,
AllowedSolution allowedSolution)
Solve for a zero in the given interval, start at
startValue . |
BracketedUnivariateSolver.Interval |
solveInterval(int maxEval,
UnivariateFunction f,
double min,
double max,
double startValue)
Solve for a zero in the given interval and return a tolerance interval surrounding
the root.
|
computeObjectiveValue, getAbsoluteAccuracy, getEvaluations, getFunctionValueAccuracy, getMax, getMaxEvaluations, getMin, getRelativeAccuracy, getStartValue, incrementEvaluationCount, isBracketing, isSequence, setup, solve, solve, solve, verifyBracketing, verifyInterval, verifySequence
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
solveInterval
getAbsoluteAccuracy, getEvaluations, getFunctionValueAccuracy, getMaxEvaluations, getRelativeAccuracy, solve, solve, solve
public BracketingNthOrderBrentSolver()
public BracketingNthOrderBrentSolver(double absoluteAccuracy, int maximalOrder) throws MathIllegalArgumentException
absoluteAccuracy
- Absolute accuracy.maximalOrder
- maximal order.MathIllegalArgumentException
- if maximal order is lower than 2public BracketingNthOrderBrentSolver(double relativeAccuracy, double absoluteAccuracy, int maximalOrder) throws MathIllegalArgumentException
relativeAccuracy
- Relative accuracy.absoluteAccuracy
- Absolute accuracy.maximalOrder
- maximal order.MathIllegalArgumentException
- if maximal order is lower than 2public BracketingNthOrderBrentSolver(double relativeAccuracy, double absoluteAccuracy, double functionValueAccuracy, int maximalOrder) throws MathIllegalArgumentException
relativeAccuracy
- Relative accuracy.absoluteAccuracy
- Absolute accuracy.functionValueAccuracy
- Function value accuracy.maximalOrder
- maximal order.MathIllegalArgumentException
- if maximal order is lower than 2public int getMaximalOrder()
protected double doSolve()
doSolve
in class BaseAbstractUnivariateSolver<UnivariateFunction>
protected BracketedUnivariateSolver.Interval doSolveInterval()
public double solve(int maxEval, UnivariateFunction f, double min, double max, AllowedSolution allowedSolution) throws MathIllegalArgumentException, MathIllegalStateException
solve
in interface BracketedUnivariateSolver<UnivariateFunction>
maxEval
- Maximum number of evaluations.f
- Function to solve.min
- Lower bound for the interval.max
- Upper bound for the interval.allowedSolution
- The kind of solutions that the root-finding algorithm may
accept as solutions.MathIllegalArgumentException
- if the arguments do not satisfy the requirements specified by the solver.MathIllegalStateException
- if
the allowed number of evaluations is exceeded.public double solve(int maxEval, UnivariateFunction f, double min, double max, double startValue, AllowedSolution allowedSolution) throws MathIllegalArgumentException, MathIllegalStateException
startValue
.
A solver may require that the interval brackets a single zero root.
Solvers that do require bracketing should be able to handle the case
where one of the endpoints is itself a root.solve
in interface BracketedUnivariateSolver<UnivariateFunction>
maxEval
- Maximum number of evaluations.f
- Function to solve.min
- Lower bound for the interval.max
- Upper bound for the interval.startValue
- Start value to use.allowedSolution
- The kind of solutions that the root-finding algorithm may
accept as solutions.MathIllegalArgumentException
- if the arguments do not satisfy the requirements specified by the solver.MathIllegalStateException
- if
the allowed number of evaluations is exceeded.public BracketedUnivariateSolver.Interval solveInterval(int maxEval, UnivariateFunction f, double min, double max, double startValue) throws MathIllegalArgumentException, MathIllegalStateException
It is required that the starting interval brackets a root or that the function value at either end point is 0.0.
solveInterval
in interface BracketedUnivariateSolver<UnivariateFunction>
maxEval
- Maximum number of evaluations.f
- Function to solve.min
- Lower bound for the interval.max
- Upper bound for the interval. Must be greater than min
.startValue
- start value to use. Must be in the interval [min, max].absolute
accuracy + max(ta, tb) * relative
accuracy) or (
max(|f(ta)|, |f(tb)|) <= BaseUnivariateSolver.getFunctionValueAccuracy()
) or there are no
floating point numbers between ta and tb. The width of the interval (tb - ta) may
be zero.MathIllegalArgumentException
- if the arguments do not satisfy the
requirements specified by the solver.MathIllegalStateException
- if the allowed number of evaluations is
exceeded.Copyright © 2016–2020 Hipparchus.org. All rights reserved.