public abstract class BaseSecantSolver extends AbstractUnivariateSolver implements BracketedUnivariateSolver<UnivariateFunction>
Implementation of the Regula Falsi
and
Illinois
methods is based on the
following article: M. Dowell and P. Jarratt,
A modified regula falsi method for computing the root of an
equation, BIT Numerical Mathematics, volume 11, number 2,
pages 168-174, Springer, 1971.
Implementation of the Pegasus
method is
based on the following article: M. Dowell and P. Jarratt,
The "Pegasus" method for computing the root of an equation,
BIT Numerical Mathematics, volume 12, number 4, pages 503-508, Springer,
1972.
The Secant
method is not a
bracketing method, so it is not implemented here. It has a separate
implementation.
Modifier and Type | Class and Description |
---|---|
protected static class |
BaseSecantSolver.Method
Secant-based root-finding methods.
|
BracketedUnivariateSolver.Interval
Modifier and Type | Field and Description |
---|---|
protected static double |
DEFAULT_ABSOLUTE_ACCURACY
Default absolute accuracy.
|
Modifier | Constructor and Description |
---|---|
protected |
BaseSecantSolver(double absoluteAccuracy,
BaseSecantSolver.Method method)
Construct a solver.
|
protected |
BaseSecantSolver(double relativeAccuracy,
double absoluteAccuracy,
BaseSecantSolver.Method method)
Construct a solver.
|
protected |
BaseSecantSolver(double relativeAccuracy,
double absoluteAccuracy,
double functionValueAccuracy,
BaseSecantSolver.Method method)
Construct a solver.
|
Modifier and Type | Method and Description |
---|---|
protected double |
doSolve()
Method for implementing actual optimization algorithms in derived
classes.
|
protected BracketedUnivariateSolver.Interval |
doSolveInterval()
Find a root and return the containing interval.
|
double |
solve(int maxEval,
UnivariateFunction f,
double min,
double max,
AllowedSolution allowedSolution)
Solve for a zero in the given interval.
|
double |
solve(int maxEval,
UnivariateFunction f,
double min,
double max,
double startValue)
Solve for a zero in the given interval, start at
startValue . |
double |
solve(int maxEval,
UnivariateFunction f,
double min,
double max,
double startValue,
AllowedSolution allowedSolution)
Solve for a zero in the given interval, start at
startValue . |
BracketedUnivariateSolver.Interval |
solveInterval(int maxEval,
UnivariateFunction f,
double min,
double max,
double startValue)
Solve for a zero in the given interval and return a tolerance interval surrounding
the root.
|
computeObjectiveValue, getAbsoluteAccuracy, getEvaluations, getFunctionValueAccuracy, getMax, getMaxEvaluations, getMin, getRelativeAccuracy, getStartValue, incrementEvaluationCount, isBracketing, isSequence, setup, solve, solve, verifyBracketing, verifyInterval, verifySequence
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
solveInterval
getAbsoluteAccuracy, getEvaluations, getFunctionValueAccuracy, getMaxEvaluations, getRelativeAccuracy, solve, solve
protected static final double DEFAULT_ABSOLUTE_ACCURACY
protected BaseSecantSolver(double absoluteAccuracy, BaseSecantSolver.Method method)
absoluteAccuracy
- Absolute accuracy.method
- Secant-based root-finding method to use.protected BaseSecantSolver(double relativeAccuracy, double absoluteAccuracy, BaseSecantSolver.Method method)
relativeAccuracy
- Relative accuracy.absoluteAccuracy
- Absolute accuracy.method
- Secant-based root-finding method to use.protected BaseSecantSolver(double relativeAccuracy, double absoluteAccuracy, double functionValueAccuracy, BaseSecantSolver.Method method)
relativeAccuracy
- Maximum relative error.absoluteAccuracy
- Maximum absolute error.functionValueAccuracy
- Maximum function value error.method
- Secant-based root-finding method to usepublic double solve(int maxEval, UnivariateFunction f, double min, double max, AllowedSolution allowedSolution)
solve
in interface BracketedUnivariateSolver<UnivariateFunction>
maxEval
- Maximum number of evaluations.f
- Function to solve.min
- Lower bound for the interval.max
- Upper bound for the interval.allowedSolution
- The kind of solutions that the root-finding algorithm may
accept as solutions.public double solve(int maxEval, UnivariateFunction f, double min, double max, double startValue, AllowedSolution allowedSolution)
startValue
.
A solver may require that the interval brackets a single zero root.
Solvers that do require bracketing should be able to handle the case
where one of the endpoints is itself a root.solve
in interface BracketedUnivariateSolver<UnivariateFunction>
maxEval
- Maximum number of evaluations.f
- Function to solve.min
- Lower bound for the interval.max
- Upper bound for the interval.startValue
- Start value to use.allowedSolution
- The kind of solutions that the root-finding algorithm may
accept as solutions.public double solve(int maxEval, UnivariateFunction f, double min, double max, double startValue)
startValue
.
A solver may require that the interval brackets a single zero root.
Solvers that do require bracketing should be able to handle the case
where one of the endpoints is itself a root.solve
in interface BaseUnivariateSolver<UnivariateFunction>
solve
in class BaseAbstractUnivariateSolver<UnivariateFunction>
maxEval
- Maximum number of evaluations.f
- Function to solve.min
- Lower bound for the interval.max
- Upper bound for the interval.startValue
- Start value to use.public BracketedUnivariateSolver.Interval solveInterval(int maxEval, UnivariateFunction f, double min, double max, double startValue) throws MathIllegalArgumentException, MathIllegalStateException
It is required that the starting interval brackets a root or that the function value at either end point is 0.0.
solveInterval
in interface BracketedUnivariateSolver<UnivariateFunction>
maxEval
- Maximum number of evaluations.f
- Function to solve.min
- Lower bound for the interval.max
- Upper bound for the interval. Must be greater than min
.startValue
- start value to use. Must be in the interval [min, max].absolute
accuracy + max(ta, tb) * relative
accuracy) or (
max(|f(ta)|, |f(tb)|) <= BaseUnivariateSolver.getFunctionValueAccuracy()
) or there are no
floating point numbers between ta and tb. The width of the interval (tb - ta) may
be zero.MathIllegalArgumentException
- if the arguments do not satisfy the
requirements specified by the solver.MathIllegalStateException
- if the allowed number of evaluations is
exceeded.protected final double doSolve() throws MathIllegalStateException
doSolve
in class BaseAbstractUnivariateSolver<UnivariateFunction>
MathIllegalStateException
- if the algorithm failed due to finite
precision.protected final BracketedUnivariateSolver.Interval doSolveInterval() throws MathIllegalStateException
MathIllegalStateException
- if convergence fails.Copyright © 2016–2020 Hipparchus.org. All rights reserved.