public class Tuple extends Object implements RealFieldElement<Tuple>
DEG_TO_RAD, RAD_TO_DEG| Constructor and Description | 
|---|
| Tuple(double... x)Creates a new instance from its components. | 
| Modifier and Type | Method and Description | 
|---|---|
| Tuple | abs()absolute value. | 
| Tuple | acos()Arc cosine operation. | 
| Tuple | acosh()Inverse hyperbolic cosine operation. | 
| Tuple | add(double a)'+' operator. | 
| Tuple | add(Tuple a)Compute this + a. | 
| Tuple | asin()Arc sine operation. | 
| Tuple | asinh()Inverse hyperbolic sine operation. | 
| Tuple | atan()Arc tangent operation. | 
| Tuple | atan2(Tuple x)Two arguments arc tangent operation. | 
| Tuple | atanh()Inverse hyperbolic  tangent operation. | 
| Tuple | cbrt()Cubic root. | 
| Tuple | ceil()Get the smallest whole number larger than instance. | 
| Tuple | copySign(double sign)Returns the instance with the sign of the argument. | 
| Tuple | copySign(Tuple sign)Returns the instance with the sign of the argument. | 
| Tuple | cos()Cosine operation. | 
| Tuple | cosh()Hyperbolic cosine operation. | 
| Tuple | divide(double a)'÷' operator. | 
| Tuple | divide(Tuple a)Compute this ÷ a. | 
| boolean | equals(Object obj) | 
| Tuple | exp()Exponential. | 
| Tuple | expm1()Exponential minus 1. | 
| Tuple | floor()Get the largest whole number smaller than instance. | 
| double | getComponent(int index)Get one component of the tuple. | 
| double[] | getComponents()Get all components of the tuple. | 
| int | getDimension()Get the dimension of the tuple. | 
| Field<Tuple> | getField()Get the  Fieldto which the instance belongs. | 
| double | getReal()Get the real value of the number. | 
| int | hashCode() | 
| Tuple | hypot(Tuple y)Returns the hypotenuse of a triangle with sides  thisandy- sqrt(this2 +y2)
 avoiding intermediate overflow or underflow. | 
| Tuple | linearCombination(double[] a,
                 Tuple[] b)Compute a linear combination. | 
| Tuple | linearCombination(double a1,
                 Tuple b1,
                 double a2,
                 Tuple b2)Compute a linear combination. | 
| Tuple | linearCombination(double a1,
                 Tuple b1,
                 double a2,
                 Tuple b2,
                 double a3,
                 Tuple b3)Compute a linear combination. | 
| Tuple | linearCombination(double a1,
                 Tuple b1,
                 double a2,
                 Tuple b2,
                 double a3,
                 Tuple b3,
                 double a4,
                 Tuple b4)Compute a linear combination. | 
| Tuple | linearCombination(Tuple[] a,
                 Tuple[] b)Compute a linear combination. | 
| Tuple | linearCombination(Tuple a1,
                 Tuple b1,
                 Tuple a2,
                 Tuple b2)Compute a linear combination. | 
| Tuple | linearCombination(Tuple a1,
                 Tuple b1,
                 Tuple a2,
                 Tuple b2,
                 Tuple a3,
                 Tuple b3)Compute a linear combination. | 
| Tuple | linearCombination(Tuple a1,
                 Tuple b1,
                 Tuple a2,
                 Tuple b2,
                 Tuple a3,
                 Tuple b3,
                 Tuple a4,
                 Tuple b4)Compute a linear combination. | 
| Tuple | log()Natural logarithm. | 
| Tuple | log10()Base 10 logarithm. | 
| Tuple | log1p()Shifted natural logarithm. | 
| Tuple | multiply(double a)'×' operator. | 
| Tuple | multiply(int n)Compute n × this. | 
| Tuple | multiply(Tuple a)Compute this × a. | 
| Tuple | negate()Returns the additive inverse of  thiselement. | 
| Tuple | newInstance(double value)Create an instance corresponding to a constant real value. | 
| Tuple | pow(double p)Power operation. | 
| Tuple | pow(int n)Integer power operation. | 
| Tuple | pow(Tuple e)Power operation. | 
| Tuple | reciprocal()Returns the multiplicative inverse of  thiselement. | 
| Tuple | remainder(double a)IEEE remainder operator. | 
| Tuple | remainder(Tuple a)IEEE remainder operator. | 
| Tuple | rint()Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers. | 
| Tuple | rootN(int n)Nth root. | 
| Tuple | scalb(int n)Multiply the instance by a power of 2. | 
| Tuple | signum()Compute the signum of the instance. | 
| Tuple | sin()Sine operation. | 
| FieldSinCos<Tuple> | sinCos()Combined Sine and Cosine operation. | 
| Tuple | sinh()Hyperbolic sine operation. | 
| Tuple | sqrt()Square root. | 
| Tuple | subtract(double a)'-' operator. | 
| Tuple | subtract(Tuple a)Compute this - a. | 
| Tuple | tan()Tangent operation. | 
| Tuple | tanh()Hyperbolic tangent operation. | 
| Tuple | toDegrees()Convert radians to degrees, with error of less than 0.5 ULP | 
| Tuple | toRadians()Convert degrees to radians, with error of less than 0.5 ULP | 
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, waitroundgetExponent, isInfinite, isNaNpublic Tuple(double... x)
x - components of the tuplepublic Tuple newInstance(double value)
 The default implementation creates the instance by adding
 the value to getField().getZero(). This is not optimal
 and does not work when called with a negative zero as the
 sign of zero is lost with the addition. The default implementation
 should therefore be overridden in concrete classes. The default
 implementation will be removed at the next major version.
 
newInstance in interface CalculusFieldElement<Tuple>value - constant real valuepublic int getDimension()
public double getComponent(int index)
index - index of the component, between 0 and getDimension() - 1public double[] getComponents()
public Field<Tuple> getField()
Field to which the instance belongs.getField in interface FieldElement<Tuple>Field to which the instance belongspublic Tuple add(Tuple a)
add in interface FieldElement<Tuple>a - element to addpublic Tuple subtract(Tuple a)
subtract in interface FieldElement<Tuple>a - element to subtractpublic Tuple negate()
this element.negate in interface FieldElement<Tuple>this.public Tuple multiply(Tuple a)
multiply in interface FieldElement<Tuple>a - element to multiplypublic Tuple multiply(int n)
multiply in interface FieldElement<Tuple>n - Number of times this must be added to itself.public Tuple divide(Tuple a)
divide in interface FieldElement<Tuple>a - element to divide bypublic Tuple reciprocal()
this element.reciprocal in interface CalculusFieldElement<Tuple>reciprocal in interface FieldElement<Tuple>this.public double getReal()
getReal in interface CalculusFieldElement<Tuple>public Tuple add(double a)
add in interface CalculusFieldElement<Tuple>a - right hand side parameter of the operatorpublic Tuple subtract(double a)
subtract in interface CalculusFieldElement<Tuple>a - right hand side parameter of the operatorpublic Tuple multiply(double a)
multiply in interface CalculusFieldElement<Tuple>a - right hand side parameter of the operatorpublic Tuple divide(double a)
divide in interface CalculusFieldElement<Tuple>a - right hand side parameter of the operatorpublic Tuple remainder(double a)
remainder in interface CalculusFieldElement<Tuple>a - right hand side parameter of the operatorpublic Tuple remainder(Tuple a)
remainder in interface CalculusFieldElement<Tuple>a - right hand side parameter of the operatorpublic Tuple abs()
abs in interface RealFieldElement<Tuple>public Tuple ceil()
ceil in interface CalculusFieldElement<Tuple>public Tuple floor()
floor in interface CalculusFieldElement<Tuple>public Tuple rint()
rint in interface CalculusFieldElement<Tuple>public Tuple signum()
signum in interface CalculusFieldElement<Tuple>public Tuple copySign(Tuple sign)
sign argument is treated as positive.copySign in interface CalculusFieldElement<Tuple>sign - the sign for the returned valuesign argumentpublic Tuple copySign(double sign)
sign argument is treated as positive.copySign in interface CalculusFieldElement<Tuple>sign - the sign for the returned valuesign argumentpublic Tuple scalb(int n)
scalb in interface CalculusFieldElement<Tuple>n - power of 2public Tuple hypot(Tuple y)
this and y
 - sqrt(this2 +y2)
 avoiding intermediate overflow or underflow.
 hypot in interface CalculusFieldElement<Tuple>y - a valuepublic Tuple sqrt()
sqrt in interface CalculusFieldElement<Tuple>public Tuple cbrt()
cbrt in interface CalculusFieldElement<Tuple>public Tuple rootN(int n)
rootN in interface CalculusFieldElement<Tuple>n - order of the rootpublic Tuple pow(double p)
pow in interface CalculusFieldElement<Tuple>p - power to applypublic Tuple pow(int n)
pow in interface CalculusFieldElement<Tuple>n - power to applypublic Tuple pow(Tuple e)
pow in interface CalculusFieldElement<Tuple>e - exponentpublic Tuple exp()
exp in interface CalculusFieldElement<Tuple>public Tuple expm1()
expm1 in interface CalculusFieldElement<Tuple>public Tuple log()
log in interface CalculusFieldElement<Tuple>public Tuple log1p()
log1p in interface CalculusFieldElement<Tuple>public Tuple log10()
log10 in interface CalculusFieldElement<Tuple>public Tuple cos()
cos in interface CalculusFieldElement<Tuple>public Tuple sin()
sin in interface CalculusFieldElement<Tuple>public FieldSinCos<Tuple> sinCos()
sinCos in interface CalculusFieldElement<Tuple>public Tuple tan()
tan in interface CalculusFieldElement<Tuple>public Tuple acos()
acos in interface CalculusFieldElement<Tuple>public Tuple asin()
asin in interface CalculusFieldElement<Tuple>public Tuple atan()
atan in interface CalculusFieldElement<Tuple>public Tuple atan2(Tuple x)
atan2 in interface CalculusFieldElement<Tuple>x - second argument of the arc tangentpublic Tuple cosh()
cosh in interface CalculusFieldElement<Tuple>public Tuple sinh()
sinh in interface CalculusFieldElement<Tuple>public Tuple tanh()
tanh in interface CalculusFieldElement<Tuple>public Tuple acosh()
acosh in interface CalculusFieldElement<Tuple>public Tuple asinh()
asinh in interface CalculusFieldElement<Tuple>public Tuple atanh()
atanh in interface CalculusFieldElement<Tuple>public Tuple toDegrees()
toDegrees in interface CalculusFieldElement<Tuple>public Tuple toRadians()
toRadians in interface CalculusFieldElement<Tuple>public Tuple linearCombination(Tuple[] a, Tuple[] b) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<Tuple>a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if arrays dimensions don't matchpublic Tuple linearCombination(double[] a, Tuple[] b) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<Tuple>a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if arrays dimensions don't matchpublic Tuple linearCombination(Tuple a1, Tuple b1, Tuple a2, Tuple b2)
linearCombination in interface CalculusFieldElement<Tuple>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termCalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object), 
CalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)public Tuple linearCombination(double a1, Tuple b1, double a2, Tuple b2)
linearCombination in interface CalculusFieldElement<Tuple>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termCalculusFieldElement.linearCombination(double, Object, double, Object, double, Object), 
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)public Tuple linearCombination(Tuple a1, Tuple b1, Tuple a2, Tuple b2, Tuple a3, Tuple b3)
linearCombination in interface CalculusFieldElement<Tuple>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termCalculusFieldElement.linearCombination(Object, Object, Object, Object), 
CalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)public Tuple linearCombination(double a1, Tuple b1, double a2, Tuple b2, double a3, Tuple b3)
linearCombination in interface CalculusFieldElement<Tuple>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termCalculusFieldElement.linearCombination(double, Object, double, Object), 
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)public Tuple linearCombination(Tuple a1, Tuple b1, Tuple a2, Tuple b2, Tuple a3, Tuple b3, Tuple a4, Tuple b4)
linearCombination in interface CalculusFieldElement<Tuple>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the fourth termb4 - second factor of the fourth termCalculusFieldElement.linearCombination(Object, Object, Object, Object), 
CalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object)public Tuple linearCombination(double a1, Tuple b1, double a2, Tuple b2, double a3, Tuple b3, double a4, Tuple b4)
linearCombination in interface CalculusFieldElement<Tuple>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the fourth termb4 - second factor of the fourth termCalculusFieldElement.linearCombination(double, Object, double, Object), 
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object)Copyright © 2016–2020 Hipparchus.org. All rights reserved.