T - the type of the field elementspublic class FieldTuple<T extends RealFieldElement<T>> extends Object implements RealFieldElement<FieldTuple<T>>
DEG_TO_RAD, RAD_TO_DEG| Constructor and Description | 
|---|
| FieldTuple(T... x)Creates a new instance from its components. | 
| Modifier and Type | Method and Description | 
|---|---|
| FieldTuple<T> | abs()absolute value. | 
| FieldTuple<T> | acos()Arc cosine operation. | 
| FieldTuple<T> | acosh()Inverse hyperbolic cosine operation. | 
| FieldTuple<T> | add(double a)'+' operator. | 
| FieldTuple<T> | add(FieldTuple<T> a)Compute this + a. | 
| FieldTuple<T> | asin()Arc sine operation. | 
| FieldTuple<T> | asinh()Inverse hyperbolic sine operation. | 
| FieldTuple<T> | atan()Arc tangent operation. | 
| FieldTuple<T> | atan2(FieldTuple<T> x)Two arguments arc tangent operation. | 
| FieldTuple<T> | atanh()Inverse hyperbolic  tangent operation. | 
| FieldTuple<T> | cbrt()Cubic root. | 
| FieldTuple<T> | ceil()Get the smallest whole number larger than instance. | 
| FieldTuple<T> | copySign(double sign)Returns the instance with the sign of the argument. | 
| FieldTuple<T> | copySign(FieldTuple<T> sign)Returns the instance with the sign of the argument. | 
| FieldTuple<T> | cos()Cosine operation. | 
| FieldTuple<T> | cosh()Hyperbolic cosine operation. | 
| FieldTuple<T> | divide(double a)'÷' operator. | 
| FieldTuple<T> | divide(FieldTuple<T> a)Compute this ÷ a. | 
| boolean | equals(Object obj) | 
| FieldTuple<T> | exp()Exponential. | 
| FieldTuple<T> | expm1()Exponential minus 1. | 
| FieldTuple<T> | floor()Get the largest whole number smaller than instance. | 
| T | getComponent(int index)Get one component of the tuple. | 
| T[] | getComponents()Get all components of the tuple. | 
| int | getDimension()Get the dimension of the tuple. | 
| Field<FieldTuple<T>> | getField()Get the  Fieldto which the instance belongs. | 
| double | getReal()Get the real value of the number. | 
| int | hashCode() | 
| FieldTuple<T> | hypot(FieldTuple<T> y)Returns the hypotenuse of a triangle with sides  thisandy- sqrt(this2 +y2)
 avoiding intermediate overflow or underflow. | 
| FieldTuple<T> | linearCombination(double[] a,
                 FieldTuple<T>[] b)Compute a linear combination. | 
| FieldTuple<T> | linearCombination(double a1,
                 FieldTuple<T> b1,
                 double a2,
                 FieldTuple<T> b2)Compute a linear combination. | 
| FieldTuple<T> | linearCombination(double a1,
                 FieldTuple<T> b1,
                 double a2,
                 FieldTuple<T> b2,
                 double a3,
                 FieldTuple<T> b3)Compute a linear combination. | 
| FieldTuple<T> | linearCombination(double a1,
                 FieldTuple<T> b1,
                 double a2,
                 FieldTuple<T> b2,
                 double a3,
                 FieldTuple<T> b3,
                 double a4,
                 FieldTuple<T> b4)Compute a linear combination. | 
| FieldTuple<T> | linearCombination(FieldTuple<T>[] a,
                 FieldTuple<T>[] b)Compute a linear combination. | 
| FieldTuple<T> | linearCombination(FieldTuple<T> a1,
                 FieldTuple<T> b1,
                 FieldTuple<T> a2,
                 FieldTuple<T> b2)Compute a linear combination. | 
| FieldTuple<T> | linearCombination(FieldTuple<T> a1,
                 FieldTuple<T> b1,
                 FieldTuple<T> a2,
                 FieldTuple<T> b2,
                 FieldTuple<T> a3,
                 FieldTuple<T> b3)Compute a linear combination. | 
| FieldTuple<T> | linearCombination(FieldTuple<T> a1,
                 FieldTuple<T> b1,
                 FieldTuple<T> a2,
                 FieldTuple<T> b2,
                 FieldTuple<T> a3,
                 FieldTuple<T> b3,
                 FieldTuple<T> a4,
                 FieldTuple<T> b4)Compute a linear combination. | 
| FieldTuple<T> | log()Natural logarithm. | 
| FieldTuple<T> | log10()Base 10 logarithm. | 
| FieldTuple<T> | log1p()Shifted natural logarithm. | 
| FieldTuple<T> | multiply(double a)'×' operator. | 
| FieldTuple<T> | multiply(FieldTuple<T> a)Compute this × a. | 
| FieldTuple<T> | multiply(int n)Compute n × this. | 
| FieldTuple<T> | negate()Returns the additive inverse of  thiselement. | 
| FieldTuple<T> | newInstance(double value)Create an instance corresponding to a constant real value. | 
| FieldTuple<T> | pow(double p)Power operation. | 
| FieldTuple<T> | pow(FieldTuple<T> e)Power operation. | 
| FieldTuple<T> | pow(int n)Integer power operation. | 
| FieldTuple<T> | reciprocal()Returns the multiplicative inverse of  thiselement. | 
| FieldTuple<T> | remainder(double a)IEEE remainder operator. | 
| FieldTuple<T> | remainder(FieldTuple<T> a)IEEE remainder operator. | 
| FieldTuple<T> | rint()Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers. | 
| FieldTuple<T> | rootN(int n)Nth root. | 
| FieldTuple<T> | scalb(int n)Multiply the instance by a power of 2. | 
| FieldTuple<T> | signum()Compute the signum of the instance. | 
| FieldTuple<T> | sin()Sine operation. | 
| FieldSinCos<FieldTuple<T>> | sinCos()Combined Sine and Cosine operation. | 
| FieldTuple<T> | sinh()Hyperbolic sine operation. | 
| FieldTuple<T> | sqrt()Square root. | 
| FieldTuple<T> | subtract(double a)'-' operator. | 
| FieldTuple<T> | subtract(FieldTuple<T> a)Compute this - a. | 
| FieldTuple<T> | tan()Tangent operation. | 
| FieldTuple<T> | tanh()Hyperbolic tangent operation. | 
| FieldTuple<T> | toDegrees()Convert radians to degrees, with error of less than 0.5 ULP | 
| FieldTuple<T> | toRadians()Convert degrees to radians, with error of less than 0.5 ULP | 
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, waitroundgetExponent, isInfinite, isNaN@SafeVarargs public FieldTuple(T... x)
x - components of the tuplepublic FieldTuple<T> newInstance(double value)
 The default implementation creates the instance by adding
 the value to getField().getZero(). This is not optimal
 and does not work when called with a negative zero as the
 sign of zero is lost with the addition. The default implementation
 should therefore be overridden in concrete classes. The default
 implementation will be removed at the next major version.
 
newInstance in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>value - constant real valuepublic int getDimension()
public T getComponent(int index)
index - index of the component, between 0 and getDimension() - 1public T[] getComponents()
public Field<FieldTuple<T>> getField()
Field to which the instance belongs.getField in interface FieldElement<FieldTuple<T extends RealFieldElement<T>>>Field to which the instance belongspublic FieldTuple<T> add(FieldTuple<T> a)
add in interface FieldElement<FieldTuple<T extends RealFieldElement<T>>>a - element to addpublic FieldTuple<T> subtract(FieldTuple<T> a)
subtract in interface FieldElement<FieldTuple<T extends RealFieldElement<T>>>a - element to subtractpublic FieldTuple<T> negate()
this element.negate in interface FieldElement<FieldTuple<T extends RealFieldElement<T>>>this.public FieldTuple<T> multiply(FieldTuple<T> a)
multiply in interface FieldElement<FieldTuple<T extends RealFieldElement<T>>>a - element to multiplypublic FieldTuple<T> multiply(int n)
multiply in interface FieldElement<FieldTuple<T extends RealFieldElement<T>>>n - Number of times this must be added to itself.public FieldTuple<T> divide(FieldTuple<T> a)
divide in interface FieldElement<FieldTuple<T extends RealFieldElement<T>>>a - element to divide bypublic FieldTuple<T> reciprocal()
this element.reciprocal in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>reciprocal in interface FieldElement<FieldTuple<T extends RealFieldElement<T>>>this.public double getReal()
getReal in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> add(double a)
add in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldTuple<T> subtract(double a)
subtract in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldTuple<T> multiply(double a)
multiply in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldTuple<T> divide(double a)
divide in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldTuple<T> remainder(double a)
remainder in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldTuple<T> remainder(FieldTuple<T> a)
remainder in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldTuple<T> abs()
abs in interface RealFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> ceil()
ceil in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> floor()
floor in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> rint()
rint in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> signum()
signum in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> copySign(FieldTuple<T> sign)
sign argument is treated as positive.copySign in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>sign - the sign for the returned valuesign argumentpublic FieldTuple<T> copySign(double sign)
sign argument is treated as positive.copySign in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>sign - the sign for the returned valuesign argumentpublic FieldTuple<T> scalb(int n)
scalb in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>n - power of 2public FieldTuple<T> hypot(FieldTuple<T> y)
this and y
 - sqrt(this2 +y2)
 avoiding intermediate overflow or underflow.
 hypot in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>y - a valuepublic FieldTuple<T> sqrt()
sqrt in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> cbrt()
cbrt in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> rootN(int n)
rootN in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>n - order of the rootpublic FieldTuple<T> pow(double p)
pow in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>p - power to applypublic FieldTuple<T> pow(int n)
pow in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>n - power to applypublic FieldTuple<T> pow(FieldTuple<T> e)
pow in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>e - exponentpublic FieldTuple<T> exp()
exp in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> expm1()
expm1 in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> log()
log in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> log1p()
log1p in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> log10()
log10 in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> cos()
cos in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> sin()
sin in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldSinCos<FieldTuple<T>> sinCos()
sinCos in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> tan()
tan in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> acos()
acos in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> asin()
asin in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> atan()
atan in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> atan2(FieldTuple<T> x)
atan2 in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>x - second argument of the arc tangentpublic FieldTuple<T> cosh()
cosh in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> sinh()
sinh in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> tanh()
tanh in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> acosh()
acosh in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> asinh()
asinh in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> atanh()
atanh in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> toDegrees()
toDegrees in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> toRadians()
toRadians in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>public FieldTuple<T> linearCombination(FieldTuple<T>[] a, FieldTuple<T>[] b) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if arrays dimensions don't matchpublic FieldTuple<T> linearCombination(double[] a, FieldTuple<T>[] b) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if arrays dimensions don't matchpublic FieldTuple<T> linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2)
linearCombination in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termCalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object), 
CalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)public FieldTuple<T> linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2)
linearCombination in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termCalculusFieldElement.linearCombination(double, Object, double, Object, double, Object), 
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)public FieldTuple<T> linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2, FieldTuple<T> a3, FieldTuple<T> b3)
linearCombination in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termCalculusFieldElement.linearCombination(Object, Object, Object, Object), 
CalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)public FieldTuple<T> linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2, double a3, FieldTuple<T> b3)
linearCombination in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termCalculusFieldElement.linearCombination(double, Object, double, Object), 
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)public FieldTuple<T> linearCombination(FieldTuple<T> a1, FieldTuple<T> b1, FieldTuple<T> a2, FieldTuple<T> b2, FieldTuple<T> a3, FieldTuple<T> b3, FieldTuple<T> a4, FieldTuple<T> b4)
linearCombination in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the fourth termb4 - second factor of the fourth termCalculusFieldElement.linearCombination(Object, Object, Object, Object), 
CalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object)public FieldTuple<T> linearCombination(double a1, FieldTuple<T> b1, double a2, FieldTuple<T> b2, double a3, FieldTuple<T> b3, double a4, FieldTuple<T> b4)
linearCombination in interface CalculusFieldElement<FieldTuple<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the fourth termb4 - second factor of the fourth termCalculusFieldElement.linearCombination(double, Object, double, Object), 
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object)Copyright © 2016–2020 Hipparchus.org. All rights reserved.