public interface UpdatingMultipleLinearRegression
| Modifier and Type | Method and Description | 
|---|---|
| void | addObservation(double[] x,
              double y)Adds one observation to the regression model. | 
| void | addObservations(double[][] x,
               double[] y)Adds a series of observations to the regression model. | 
| void | clear()Clears internal buffers and resets the regression model. | 
| long | getN()Returns the number of observations added to the regression model. | 
| boolean | hasIntercept()Returns true if a constant has been included false otherwise. | 
| RegressionResults | regress()Performs a regression on data present in buffers and outputs a RegressionResults object | 
| RegressionResults | regress(int[] variablesToInclude)Performs a regression on data present in buffers including only regressors
 indexed in variablesToInclude and outputs a RegressionResults object | 
boolean hasIntercept()
long getN()
void addObservation(double[] x,
                    double y)
             throws MathIllegalArgumentException
x - the independent variables which form the design matrixy - the dependent or response variableMathIllegalArgumentException - if the length of x does not equal
 the number of independent variables in the modelvoid addObservations(double[][] x,
                     double[] y)
              throws MathIllegalArgumentException
x - a series of observations on the independent variablesy - a series of observations on the dependent variable
 The length of x and y must be the sameMathIllegalArgumentException - if x is not rectangular, does not match
 the length of y or does not contain sufficient data to estimate the modelvoid clear()
RegressionResults regress() throws MathIllegalArgumentException
MathIllegalArgumentException - if the model is not correctly specifiedMathIllegalArgumentException - if there is not sufficient data in the model to
 estimate the regression parametersRegressionResults regress(int[] variablesToInclude) throws MathIllegalArgumentException
variablesToInclude - an array of indices of regressors to includeMathIllegalArgumentException - if the model is not correctly specifiedMathIllegalArgumentException - if the variablesToInclude array is null or zero lengthCopyright © 2016–2020 Hipparchus.org. All rights reserved.