public class GLSMultipleLinearRegression extends AbstractMultipleLinearRegression
u ~ N(0, Omega)Estimated by GLS,
b=(X' Omega^-1 X)^-1X'Omega^-1 ywhose variance is
Var(b)=(X' Omega^-1 X)^-1
| Constructor and Description | 
|---|
| GLSMultipleLinearRegression() | 
| Modifier and Type | Method and Description | 
|---|---|
| protected RealVector | calculateBeta()Calculates beta by GLS. | 
| protected RealMatrix | calculateBetaVariance()Calculates the variance on the beta. | 
| protected double | calculateErrorVariance()Calculates the estimated variance of the error term using the formula | 
| protected RealMatrix | getOmegaInverse()Get the inverse of the covariance. | 
| protected void | newCovarianceData(double[][] omega)Add the covariance data. | 
| void | newSampleData(double[] y,
             double[][] x,
             double[][] covariance)Replace sample data, overriding any previous sample. | 
calculateResiduals, calculateYVariance, estimateErrorVariance, estimateRegressandVariance, estimateRegressionParameters, estimateRegressionParametersStandardErrors, estimateRegressionParametersVariance, estimateRegressionStandardError, estimateResiduals, getX, getY, isNoIntercept, newSampleData, newXSampleData, newYSampleData, setNoIntercept, validateCovarianceData, validateSampleDatapublic void newSampleData(double[] y,
                          double[][] x,
                          double[][] covariance)
y - y values of the samplex - x values of the samplecovariance - array representing the covariance matrixprotected void newCovarianceData(double[][] omega)
omega - the [n,n] array representing the covarianceprotected RealMatrix getOmegaInverse()
The inverse of the covariance matrix is lazily evaluated and cached.
protected RealVector calculateBeta()
b=(X' Omega^-1 X)^-1X'Omega^-1 y
calculateBeta in class AbstractMultipleLinearRegressionprotected RealMatrix calculateBetaVariance()
Var(b)=(X' Omega^-1 X)^-1
calculateBetaVariance in class AbstractMultipleLinearRegressionprotected double calculateErrorVariance()
Var(u) = Tr(u' Omega^-1 u)/(n-k)where n and k are the row and column dimensions of the design matrix X.
calculateErrorVariance in class AbstractMultipleLinearRegressionCopyright © 2016–2020 Hipparchus.org. All rights reserved.