| Package | Description | 
|---|---|
| org.hipparchus.clustering | Clustering algorithms. | 
| org.hipparchus.distribution.multivariate | Implementations of multivariate distributions. | 
| org.hipparchus.optim.nonlinear.scalar.noderiv | This package provides optimization algorithms that do not require derivatives. | 
| org.hipparchus.optim.univariate | One-dimensional optimization algorithms. | 
| org.hipparchus.random | Random number and random data generators. | 
| org.hipparchus.samples | Various examples. | 
| org.hipparchus.stat.descriptive.rank | Summary statistics based on ranks. | 
| org.hipparchus.stat.fitting | Statistical methods for fitting distributions. | 
| org.hipparchus.stat.ranking | Classes providing rank transformations. | 
| org.hipparchus.util | Convenience routines and common data structures used throughout the Hipparchus library. | 
| Modifier and Type | Method and Description | 
|---|---|
| RandomGenerator | KMeansPlusPlusClusterer. getRandomGenerator()Returns the random generator this instance will use. | 
| RandomGenerator | FuzzyKMeansClusterer. getRandomGenerator()Returns the random generator this instance will use. | 
| Constructor and Description | 
|---|
| FuzzyKMeansClusterer(int k,
                    double fuzziness,
                    int maxIterations,
                    DistanceMeasure measure,
                    double epsilon,
                    RandomGenerator random)Creates a new instance of a FuzzyKMeansClusterer. | 
| KMeansPlusPlusClusterer(int k,
                       int maxIterations,
                       DistanceMeasure measure,
                       RandomGenerator random)Build a clusterer. | 
| KMeansPlusPlusClusterer(int k,
                       int maxIterations,
                       DistanceMeasure measure,
                       RandomGenerator random,
                       KMeansPlusPlusClusterer.EmptyClusterStrategy emptyStrategy)Build a clusterer. | 
| Modifier and Type | Field and Description | 
|---|---|
| protected RandomGenerator | AbstractMultivariateRealDistribution. randomRNG instance used to generate samples from the distribution. | 
| Constructor and Description | 
|---|
| AbstractMultivariateRealDistribution(RandomGenerator rng,
                                    int n) | 
| MixtureMultivariateNormalDistribution(RandomGenerator rng,
                                     List<Pair<Double,MultivariateNormalDistribution>> components)Creates a mixture model from a list of distributions and their
 associated weights. | 
| MixtureMultivariateRealDistribution(RandomGenerator rng,
                                   List<Pair<Double,T>> components)Creates a mixture model from a list of distributions and their
 associated weights. | 
| MultivariateNormalDistribution(RandomGenerator rng,
                              double[] means,
                              double[][] covariances)Creates a multivariate normal distribution with the given mean vector and
 covariance matrix. | 
| Constructor and Description | 
|---|
| CMAESOptimizer(int maxIterations,
              double stopFitness,
              boolean isActiveCMA,
              int diagonalOnly,
              int checkFeasableCount,
              RandomGenerator random,
              boolean generateStatistics,
              ConvergenceChecker<PointValuePair> checker) | 
| Constructor and Description | 
|---|
| MultiStartUnivariateOptimizer(UnivariateOptimizer optimizer,
                             int starts,
                             RandomGenerator generator)Create a multi-start optimizer from a single-start optimizer. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractWellThis abstract class implements the WELL class of pseudo-random number generator
 from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto. | 
| class  | ISAACRandomA fast cryptographic pseudo-random number generator. | 
| class  | JDKRandomGeneratorA  RandomGeneratoradapter that delegates the random number
 generation to the standardRandomclass. | 
| class  | MersenneTwisterThis class implements a powerful pseudo-random number generator
 developed by Makoto Matsumoto and Takuji Nishimura during
 1996-1997. | 
| class  | RandomAdaptorExtension of  Randomwrapping aRandomGenerator. | 
| class  | RandomDataGeneratorA class for generating random data. | 
| class  | SynchronizedRandomGeneratorAny  RandomGeneratorimplementation can be thread-safe if it
 is used through an instance of this class. | 
| class  | Well1024aThis class implements the WELL1024a pseudo-random number generator
 from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto. | 
| class  | Well19937aThis class implements the WELL19937a pseudo-random number generator
 from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto. | 
| class  | Well19937cThis class implements the WELL19937c pseudo-random number generator
 from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto. | 
| class  | Well44497aThis class implements the WELL44497a pseudo-random number generator
 from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto. | 
| class  | Well44497bThis class implements the WELL44497b pseudo-random number generator
 from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto. | 
| class  | Well512aThis class implements the WELL512a pseudo-random number generator
 from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto. | 
| Modifier and Type | Method and Description | 
|---|---|
| protected RandomGenerator | RandomDataGenerator. delegate()Returns the backing delegate instance that methods are forwarded to. | 
| Modifier and Type | Method and Description | 
|---|---|
| static RandomDataGenerator | RandomDataGenerator. of(RandomGenerator randomGenerator)Factory method to create a  RandomDatainstance using the suppliedRandomGenerator. | 
| static Random | RandomAdaptor. of(RandomGenerator randomGenerator)Factory method to create a  Randomusing the suppliedRandomGenerator. | 
| Constructor and Description | 
|---|
| GaussianRandomGenerator(RandomGenerator generator)Create a new generator. | 
| RandomAdaptor(RandomGenerator randomGenerator)Construct a RandomAdaptor wrapping the supplied RandomGenerator. | 
| StableRandomGenerator(RandomGenerator generator,
                     double alpha,
                     double beta)Create a new generator. | 
| SynchronizedRandomGenerator(RandomGenerator rng)Creates a synchronized wrapper for the given  RandomGeneratorinstance. | 
| UniformRandomGenerator(RandomGenerator generator)Create a new generator. | 
| UnitSphereRandomVectorGenerator(int dimension,
                               RandomGenerator rand) | 
| Modifier and Type | Method and Description | 
|---|---|
| static Vector2D | ClusterAlgorithmComparison. generateNoiseVector(RandomGenerator randomGenerator,
                   double noise) | 
| static List<Vector2D> | ClusterAlgorithmComparison. makeBlobs(int samples,
         int centers,
         double clusterStd,
         double min,
         double max,
         boolean shuffle,
         RandomGenerator random) | 
| static List<Vector2D> | ClusterAlgorithmComparison. makeCircles(int samples,
           boolean shuffle,
           double noise,
           double factor,
           RandomGenerator random) | 
| static List<Vector2D> | ClusterAlgorithmComparison. makeMoons(int samples,
         boolean shuffle,
         double noise,
         RandomGenerator random) | 
| Constructor and Description | 
|---|
| RandomPercentile(double epsilon,
                RandomGenerator randomGenerator)Constructs a  RandomPercentilewith quantile estimation errorepsilonusingrandomGeneratoras its source of random data. | 
| RandomPercentile(RandomGenerator randomGenerator)Constructs a  RandomPercentilewith default estimation error
 usingrandomGeneratoras its source of random data. | 
| Constructor and Description | 
|---|
| EmpiricalDistribution(int binCount,
                     RandomGenerator generator)Creates a new EmpiricalDistribution with the specified bin count using the
 provided  RandomGeneratoras the source of random data. | 
| EmpiricalDistribution(RandomGenerator generator)Creates a new EmpiricalDistribution with default bin count using the
 provided  RandomGeneratoras the source of random data. | 
| Constructor and Description | 
|---|
| NaturalRanking(NaNStrategy nanStrategy,
              RandomGenerator randomGenerator)Create a NaturalRanking with the given NaNStrategy, TiesStrategy.RANDOM
 and the given source of random data. | 
| NaturalRanking(RandomGenerator randomGenerator)Create a NaturalRanking with TiesStrategy.RANDOM and the given
 RandomGenerator as the source of random data. | 
| Modifier and Type | Method and Description | 
|---|---|
| static void | MathArrays. shuffle(int[] list,
       int start,
       MathArrays.Position pos,
       RandomGenerator rng)Shuffle the entries of the given array, using the
 
 Fisher–Yates algorithm. | 
| static void | MathArrays. shuffle(int[] list,
       RandomGenerator rng)Shuffle the entries of the given array. | 
Copyright © 2016–2020 Hipparchus.org. All rights reserved.