public static interface LeastSquaresProblem.Evaluation
LeastSquaresProblem at a particular point. This class
 also computes several quantities derived from the value and its Jacobian.| Modifier and Type | Method and Description | 
|---|---|
| double | getChiSquare()Get the sum of the squares of the residuals. | 
| double | getCost()Get the cost. | 
| RealMatrix | getCovariances(double threshold)Get the covariance matrix of the optimized parameters. | 
| RealMatrix | getJacobian()Get the weighted Jacobian matrix. | 
| RealVector | getPoint()Get the abscissa (independent variables) of this evaluation. | 
| double | getReducedChiSquare(int n)Get the reduced chi-square. | 
| RealVector | getResiduals()Get the weighted residuals. | 
| double | getRMS()Get the normalized cost. | 
| RealVector | getSigma(double covarianceSingularityThreshold)Get an estimate of the standard deviation of the parameters. | 
RealMatrix getCovariances(double threshold)
JTJ matrix,
 where J is the Jacobian matrix. The threshold parameter is a
 way for the caller to specify that the result of this computation should be
 considered meaningless, and thus trigger an exception.threshold - Singularity threshold.MathIllegalArgumentException - if the covariance matrix cannot be computed (singular problem).RealVector getSigma(double covarianceSingularityThreshold)
sd(a[i]) ~= sqrt(C[i][i]), where a[i] is the optimized
 value of the i-th parameter, and C is the covariance matrix.covarianceSingularityThreshold - Singularity threshold (see computeCovariances).MathIllegalArgumentException - if the covariance matrix cannot be computed.double getRMS()
RealMatrix getJacobian()
MathIllegalArgumentException - if the Jacobian dimension does not match problem dimension.double getCost()
objective function.getResiduals(), 
getChiSquare()double getChiSquare()
getResiduals(), 
getCost()double getReducedChiSquare(int n)
n - Number of fitted parameters.RealVector getResiduals()
MathIllegalArgumentException - if the residuals have the wrong length.RealVector getPoint()
LeastSquaresProblem.evaluate(RealVector).Copyright © 2016–2020 Hipparchus.org. All rights reserved.