public class EigenDecomposition extends Object
The eigen decomposition of matrix A is a set of two matrices: V and D such that A = V × D × VT. A, V and D are all m × m matrices.
 This class is similar in spirit to the EigenvalueDecomposition
 class from the JAMA
 library, with the following changes:
 
getVt method has been added,getRealEigenvalue and
       getImagEigenvalue methods to pick up a
       single eigenvalue have been added,getEigenvector method to pick up a
       single eigenvector has been added,getDeterminant method has been added.getSolver method has been added.As of 3.1, this class supports general real matrices (both symmetric and non-symmetric):
 If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal
 and the eigenvector matrix V is orthogonal, i.e.
 A = V.multiply(D.multiply(V.transpose())) and
 V.multiply(V.transpose()) equals the identity matrix.
 
If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks:
    [lambda, mu    ]
    [   -mu, lambda]
 
 The columns of V represent the eigenvectors in the sense that A*V = V*D,
 i.e. A.multiply(V) equals V.multiply(D).
 The matrix V may be badly conditioned, or even singular, so the validity of the
 equation A = V*D*inverse(V) depends upon the condition of V.
 This implementation is based on the paper by A. Drubrulle, R.S. Martin and J.H. Wilkinson "The Implicit QL Algorithm" in Wilksinson and Reinsch (1971) Handbook for automatic computation, vol. 2, Linear algebra, Springer-Verlag, New-York.
| Constructor and Description | 
|---|
| EigenDecomposition(double[] main,
                  double[] secondary)Calculates the eigen decomposition of the symmetric tridiagonal
 matrix. | 
| EigenDecomposition(RealMatrix matrix)Calculates the eigen decomposition of the given real matrix. | 
| Modifier and Type | Method and Description | 
|---|---|
| RealMatrix | getD()Gets the block diagonal matrix D of the decomposition. | 
| double | getDeterminant()Computes the determinant of the matrix. | 
| RealVector | getEigenvector(int i)Gets a copy of the ith eigenvector of the original matrix. | 
| double | getImagEigenvalue(int i)Gets the imaginary part of the ith eigenvalue of the original
 matrix. | 
| double[] | getImagEigenvalues()Gets a copy of the imaginary parts of the eigenvalues of the original
 matrix. | 
| double | getRealEigenvalue(int i)Returns the real part of the ith eigenvalue of the original
 matrix. | 
| double[] | getRealEigenvalues()Gets a copy of the real parts of the eigenvalues of the original matrix. | 
| DecompositionSolver | getSolver()Gets a solver for finding the A × X = B solution in exact
 linear sense. | 
| RealMatrix | getSquareRoot()Computes the square-root of the matrix. | 
| RealMatrix | getV()Gets the matrix V of the decomposition. | 
| RealMatrix | getVT()Gets the transpose of the matrix V of the decomposition. | 
| boolean | hasComplexEigenvalues()Returns whether the calculated eigen values are complex or real. | 
public EigenDecomposition(RealMatrix matrix) throws MathRuntimeException
Supports decomposition of a general matrix since 3.1.
matrix - Matrix to decompose.MathIllegalStateException - if the algorithm fails to converge.MathRuntimeException - if the decomposition of a general matrix
 results in a matrix with zero normpublic EigenDecomposition(double[] main,
                          double[] secondary)
main - Main diagonal of the symmetric tridiagonal form.secondary - Secondary of the tridiagonal form.MathIllegalStateException - if the algorithm fails to converge.public RealMatrix getV()
public RealMatrix getD()
getRealEigenvalues(), 
getImagEigenvalues()public RealMatrix getVT()
public boolean hasComplexEigenvalues()
The method performs a zero check for each element of the
 getImagEigenvalues() array and returns true if any
 element is not equal to zero.
true if the eigen values are complex, false otherwisepublic double[] getRealEigenvalues()
getD(), 
getRealEigenvalue(int), 
getImagEigenvalues()public double getRealEigenvalue(int i)
i - index of the eigenvalue (counting from 0)getD(), 
getRealEigenvalues(), 
getImagEigenvalue(int)public double[] getImagEigenvalues()
getD(), 
getImagEigenvalue(int), 
getRealEigenvalues()public double getImagEigenvalue(int i)
i - Index of the eigenvalue (counting from 0).getD(), 
getImagEigenvalues(), 
getRealEigenvalue(int)public RealVector getEigenvector(int i)
i - Index of the eigenvector (counting from 0).getD()public double getDeterminant()
public RealMatrix getSquareRoot()
MathRuntimeException - if the matrix is not
 symmetric or not positive definite.public DecompositionSolver getSolver()
 Since 3.1, eigen decomposition of a general matrix is supported,
 but the DecompositionSolver only supports real eigenvalues.
MathRuntimeException - if the decomposition resulted in
 complex eigenvaluesCopyright © 2016–2020 Hipparchus.org. All rights reserved.