public class IntervalsSet extends AbstractRegion<Euclidean1D,Euclidean1D> implements Iterable<double[]>
Region.Location| Constructor and Description | 
|---|
| IntervalsSet(BSPTree<Euclidean1D> tree,
            double tolerance)Build an intervals set from an inside/outside BSP tree. | 
| IntervalsSet(Collection<SubHyperplane<Euclidean1D>> boundary,
            double tolerance)Build an intervals set from a Boundary REPresentation (B-rep). | 
| IntervalsSet(double tolerance)Build an intervals set representing the whole real line. | 
| IntervalsSet(double lower,
            double upper,
            double tolerance)Build an intervals set corresponding to a single interval. | 
| Modifier and Type | Method and Description | 
|---|---|
| List<Interval> | asList()Build an ordered list of intervals representing the instance. | 
| IntervalsSet | buildNew(BSPTree<Euclidean1D> tree)Build a region using the instance as a prototype. | 
| protected void | computeGeometricalProperties()Compute some geometrical properties. | 
| double | getInf()Get the lowest value belonging to the instance. | 
| double | getSup()Get the highest value belonging to the instance. | 
| Iterator<double[]> | iterator() | 
| BoundaryProjection<Euclidean1D> | projectToBoundary(Point<Euclidean1D> point)Project a point on the boundary of the region. | 
applyTransform, checkPoint, checkPoint, checkPoint, checkPoint, contains, copySelf, getBarycenter, getBoundarySize, getSize, getTolerance, getTree, intersection, isEmpty, isEmpty, isFull, isFull, setBarycenter, setBarycenter, setSizeclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitforEach, spliteratorpublic IntervalsSet(double tolerance)
tolerance - tolerance below which points are considered identical.public IntervalsSet(double lower,
                    double upper,
                    double tolerance)
lower - lower bound of the interval, must be lesser or equal
 to upper (may be Double.NEGATIVE_INFINITY)upper - upper bound of the interval, must be greater or equal
 to lower (may be Double.POSITIVE_INFINITY)tolerance - tolerance below which points are considered identical.public IntervalsSet(BSPTree<Euclidean1D> tree, double tolerance)
The leaf nodes of the BSP tree must have a
 Boolean attribute representing the inside status of
 the corresponding cell (true for inside cells, false for outside
 cells). In order to avoid building too many small objects, it is
 recommended to use the predefined constants
 Boolean.TRUE and Boolean.FALSE
tree - inside/outside BSP tree representing the intervals settolerance - tolerance below which points are considered identical.public IntervalsSet(Collection<SubHyperplane<Euclidean1D>> boundary, double tolerance)
The boundary is provided as a collection of sub-hyperplanes. Each sub-hyperplane has the
 interior part of the region on its minus side and the exterior on
 its plus side.
The boundary elements can be in any order, and can form
 several non-connected sets (like for example polygons with holes
 or a set of disjoints polyhedrons considered as a whole). In
 fact, the elements do not even need to be connected together
 (their topological connections are not used here). However, if the
 boundary does not really separate an inside open from an outside
 open (open having here its topological meaning), then subsequent
 calls to the checkPoint method will not be meaningful anymore.
If the boundary is empty, the region will represent the whole space.
boundary - collection of boundary elementstolerance - tolerance below which points are considered identical.public IntervalsSet buildNew(BSPTree<Euclidean1D> tree)
This method allow to create new instances without knowing exactly the type of the region. It is an application of the prototype design pattern.
The leaf nodes of the BSP tree must have a
 Boolean attribute representing the inside status of
 the corresponding cell (true for inside cells, false for outside
 cells). In order to avoid building too many small objects, it is
 recommended to use the predefined constants
 Boolean.TRUE and Boolean.FALSE. The
 tree also must have either null internal nodes or
 internal nodes representing the boundary as specified in the
 getTree method).
buildNew in interface Region<Euclidean1D>buildNew in class AbstractRegion<Euclidean1D,Euclidean1D>tree - inside/outside BSP tree representing the new regionprotected void computeGeometricalProperties()
The properties to compute are the barycenter and the size.
computeGeometricalProperties in class AbstractRegion<Euclidean1D,Euclidean1D>public double getInf()
Double.NEGATIVE_INFINITY if the instance doesn't
 have any low bound, Double.POSITIVE_INFINITY if the
 instance is empty)public double getSup()
Double.POSITIVE_INFINITY if the instance doesn't
 have any high bound, Double.NEGATIVE_INFINITY if the
 instance is empty)public BoundaryProjection<Euclidean1D> projectToBoundary(Point<Euclidean1D> point)
projectToBoundary in interface Region<Euclidean1D>projectToBoundary in class AbstractRegion<Euclidean1D,Euclidean1D>point - point to checkpublic List<Interval> asList()
This method builds this intervals set as an ordered list of
 Interval elements. If the intervals set has no
 lower limit, the first interval will have its low bound equal to
 Double.NEGATIVE_INFINITY. If the intervals set has
 no upper limit, the last interval will have its upper bound equal
 to Double.POSITIVE_INFINITY. An empty tree will
 build an empty list while a tree representing the whole real line
 will build a one element list with both bounds being
 infinite.
Interval
 elementsCopyright © 2016–2020 Hipparchus.org. All rights reserved.