public class NakagamiDistribution extends AbstractRealDistribution
DEFAULT_SOLVER_ABSOLUTE_ACCURACY| Constructor and Description | 
|---|
| NakagamiDistribution(double mu,
                    double omega)Build a new instance. | 
| NakagamiDistribution(double mu,
                    double omega,
                    double inverseAbsoluteAccuracy)Build a new instance. | 
| Modifier and Type | Method and Description | 
|---|---|
| double | cumulativeProbability(double x)For a random variable  Xwhose values are distributed according
 to this distribution, this method returnsP(X <= x). | 
| double | density(double x)Returns the probability density function (PDF) of this distribution
 evaluated at the specified point  x. | 
| double | getNumericalMean()Use this method to get the numerical value of the mean of this
 distribution. | 
| double | getNumericalVariance()Use this method to get the numerical value of the variance of this
 distribution. | 
| double | getScale()Access the scale parameter,  omega. | 
| double | getShape()Access the shape parameter,  mu. | 
| double | getSupportLowerBound()Access the lower bound of the support. | 
| double | getSupportUpperBound()Access the upper bound of the support. | 
| boolean | isSupportConnected()Use this method to get information about whether the support is connected,
 i.e. | 
getSolverAbsoluteAccuracy, inverseCumulativeProbability, logDensity, probabilitypublic NakagamiDistribution(double mu,
                            double omega)
                     throws MathIllegalArgumentException
mu - shape parameteromega - scale parameter (must be positive)MathIllegalArgumentException - if mu < 0.5MathIllegalArgumentException - if omega <= 0public NakagamiDistribution(double mu,
                            double omega,
                            double inverseAbsoluteAccuracy)
                     throws MathIllegalArgumentException
mu - shape parameteromega - scale parameter (must be positive)inverseAbsoluteAccuracy - the maximum absolute error in inverse
 cumulative probability estimates (defaults to AbstractRealDistribution.DEFAULT_SOLVER_ABSOLUTE_ACCURACY).MathIllegalArgumentException - if mu < 0.5MathIllegalArgumentException - if omega <= 0public double getShape()
mu.public double getScale()
omega.public double density(double x)
x. In general, the PDF is
 the derivative of the CDF.
 If the derivative does not exist at x, then an appropriate
 replacement should be returned, e.g. Double.POSITIVE_INFINITY,
 Double.NaN, or  the limit inferior or limit superior of the
 difference quotient.x - the point at which the PDF is evaluatedxpublic double cumulativeProbability(double x)
X whose values are distributed according
 to this distribution, this method returns P(X <= x). In other
 words, this method represents the (cumulative) distribution function
 (CDF) for this distribution.x - the point at which the CDF is evaluatedxpublic double getNumericalMean()
Double.NaN if it is not definedpublic double getNumericalVariance()
Double.POSITIVE_INFINITY as
 for certain cases in TDistribution)
 or Double.NaN if it is not definedpublic double getSupportLowerBound()
inverseCumulativeProbability(0). In other words, this
 method must return
 inf {x in R | P(X <= x) > 0}.
Double.NEGATIVE_INFINITY)public double getSupportUpperBound()
inverseCumulativeProbability(1). In other words, this
 method must return
 inf {x in R | P(X <= x) = 1}.
Double.POSITIVE_INFINITY)public boolean isSupportConnected()
Copyright © 2016–2020 Hipparchus.org. All rights reserved.