public class CauchyDistribution extends AbstractRealDistribution
DEFAULT_SOLVER_ABSOLUTE_ACCURACY| Constructor and Description | 
|---|
| CauchyDistribution()Creates a Cauchy distribution with the median equal to zero and scale
 equal to one. | 
| CauchyDistribution(double median,
                  double scale)Creates a Cauchy distribution. | 
| Modifier and Type | Method and Description | 
|---|---|
| double | cumulativeProbability(double x)For a random variable  Xwhose values are distributed according
 to this distribution, this method returnsP(X <= x). | 
| double | density(double x)Returns the probability density function (PDF) of this distribution
 evaluated at the specified point  x. | 
| double | getMedian()Access the median. | 
| double | getNumericalMean()Use this method to get the numerical value of the mean of this
 distribution. | 
| double | getNumericalVariance()Use this method to get the numerical value of the variance of this
 distribution. | 
| double | getScale()Access the scale parameter. | 
| double | getSupportLowerBound()Access the lower bound of the support. | 
| double | getSupportUpperBound()Access the upper bound of the support. | 
| double | inverseCumulativeProbability(double p)Computes the quantile function of this distribution. | 
| boolean | isSupportConnected()Use this method to get information about whether the support is connected,
 i.e. | 
getSolverAbsoluteAccuracy, logDensity, probabilitypublic CauchyDistribution()
public CauchyDistribution(double median,
                          double scale)
                   throws MathIllegalArgumentException
median - Median for this distributionscale - Scale parameter for this distributionMathIllegalArgumentException - if scale <= 0public double cumulativeProbability(double x)
X whose values are distributed according
 to this distribution, this method returns P(X <= x). In other
 words, this method represents the (cumulative) distribution function
 (CDF) for this distribution.x - the point at which the CDF is evaluatedxpublic double getMedian()
public double getScale()
public double density(double x)
x. In general, the PDF is
 the derivative of the CDF.
 If the derivative does not exist at x, then an appropriate
 replacement should be returned, e.g. Double.POSITIVE_INFINITY,
 Double.NaN, or  the limit inferior or limit superior of the
 difference quotient.x - the point at which the PDF is evaluatedxpublic double inverseCumulativeProbability(double p)
                                    throws MathIllegalArgumentException
X distributed according to this distribution, the
 returned value is
 inf{x in R | P(X<=x) >= p} for 0 < p <= 1,inf{x in R | P(X<=x) > 0} for p = 0.RealDistribution.getSupportLowerBound() for p = 0,RealDistribution.getSupportUpperBound() for p = 1.Double.NEGATIVE_INFINITY when p == 0
 and Double.POSITIVE_INFINITY when p == 1.inverseCumulativeProbability in interface RealDistributioninverseCumulativeProbability in class AbstractRealDistributionp - the cumulative probabilityp-quantile of this distribution
 (largest 0-quantile for p = 0)MathIllegalArgumentException - if p < 0 or p > 1public double getNumericalMean()
public double getNumericalVariance()
public double getSupportLowerBound()
inverseCumulativeProbability(0). In other words, this
 method must return
 inf {x in R | P(X <= x) > 0}.
public double getSupportUpperBound()
inverseCumulativeProbability(1). In other words, this
 method must return
 inf {x in R | P(X <= x) = 1}.
public boolean isSupportConnected()
trueCopyright © 2016–2020 Hipparchus.org. All rights reserved.