T - the type of the field elementspublic class FieldDerivativeStructure<T extends RealFieldElement<T>> extends Object implements FieldDerivative<T,FieldDerivativeStructure<T>>
This class is similar to DerivativeStructure except function
 parameters and value can be any RealFieldElement.
Instances of this class are guaranteed to be immutable.
DerivativeStructure, 
FDSFactory, 
DSCompilerDEG_TO_RAD, RAD_TO_DEG| Modifier and Type | Method and Description | 
|---|---|
| FieldDerivativeStructure<T> | abs()absolute value. | 
| FieldDerivativeStructure<T> | acos()Arc cosine operation. | 
| FieldDerivativeStructure<T> | acosh()Inverse hyperbolic cosine operation. | 
| FieldDerivativeStructure<T> | add(double a)'+' operator. | 
| FieldDerivativeStructure<T> | add(FieldDerivativeStructure<T> a)Compute this + a. | 
| FieldDerivativeStructure<T> | add(T a)'+' operator. | 
| FieldDerivativeStructure<T> | asin()Arc sine operation. | 
| FieldDerivativeStructure<T> | asinh()Inverse hyperbolic sine operation. | 
| FieldDerivativeStructure<T> | atan()Arc tangent operation. | 
| FieldDerivativeStructure<T> | atan2(FieldDerivativeStructure<T> x)Two arguments arc tangent operation. | 
| static <T extends RealFieldElement<T>> | atan2(FieldDerivativeStructure<T> y,
     FieldDerivativeStructure<T> x)Two arguments arc tangent operation. | 
| FieldDerivativeStructure<T> | atanh()Inverse hyperbolic  tangent operation. | 
| FieldDerivativeStructure<T> | cbrt()Cubic root. | 
| FieldDerivativeStructure<T> | ceil()Get the smallest whole number larger than instance. | 
| FieldDerivativeStructure<T> | compose(double... f)Compute composition of the instance by a univariate function. | 
| FieldDerivativeStructure<T> | compose(T... f)Compute composition of the instance by a univariate function. | 
| FieldDerivativeStructure<T> | copySign(double sign)Returns the instance with the sign of the argument. | 
| FieldDerivativeStructure<T> | copySign(FieldDerivativeStructure<T> sign)Returns the instance with the sign of the argument. | 
| FieldDerivativeStructure<T> | copySign(T sign)Returns the instance with the sign of the argument. | 
| FieldDerivativeStructure<T> | cos()Cosine operation. | 
| FieldDerivativeStructure<T> | cosh()Hyperbolic cosine operation. | 
| FieldDerivativeStructure<T> | divide(double a)'÷' operator. | 
| FieldDerivativeStructure<T> | divide(FieldDerivativeStructure<T> a)Compute this ÷ a. | 
| FieldDerivativeStructure<T> | divide(T a)'÷' operator. | 
| FieldDerivativeStructure<T> | exp()Exponential. | 
| FieldDerivativeStructure<T> | expm1()Exponential minus 1. | 
| FieldDerivativeStructure<T> | floor()Get the largest whole number smaller than instance. | 
| T[] | getAllDerivatives()Get all partial derivatives. | 
| int | getExponent()Return the exponent of the instance value, removing the bias. | 
| FDSFactory<T> | getFactory()Get the factory that built the instance. | 
| Field<FieldDerivativeStructure<T>> | getField()Get the  Fieldto which the instance belongs. | 
| int | getFreeParameters()Get the number of free parameters. | 
| int | getOrder()Get the derivation order. | 
| T | getPartialDerivative(int... orders)Get a partial derivative. | 
| double | getReal()Get the real value of the number. | 
| T | getValue()Get the value part of the derivative structure. | 
| FieldDerivativeStructure<T> | hypot(FieldDerivativeStructure<T> y)Returns the hypotenuse of a triangle with sides  thisandy- sqrt(this2 +y2)
 avoiding intermediate overflow or underflow. | 
| static <T extends RealFieldElement<T>> | hypot(FieldDerivativeStructure<T> x,
     FieldDerivativeStructure<T> y)Returns the hypotenuse of a triangle with sides  xandy- sqrt(x2 +y2)
 avoiding intermediate overflow or underflow. | 
| FieldDerivativeStructure<T> | linearCombination(double[] a,
                 FieldDerivativeStructure<T>[] b)Compute a linear combination. | 
| FieldDerivativeStructure<T> | linearCombination(double a1,
                 FieldDerivativeStructure<T> b1,
                 double a2,
                 FieldDerivativeStructure<T> b2)Compute a linear combination. | 
| FieldDerivativeStructure<T> | linearCombination(double a1,
                 FieldDerivativeStructure<T> b1,
                 double a2,
                 FieldDerivativeStructure<T> b2,
                 double a3,
                 FieldDerivativeStructure<T> b3)Compute a linear combination. | 
| FieldDerivativeStructure<T> | linearCombination(double a1,
                 FieldDerivativeStructure<T> b1,
                 double a2,
                 FieldDerivativeStructure<T> b2,
                 double a3,
                 FieldDerivativeStructure<T> b3,
                 double a4,
                 FieldDerivativeStructure<T> b4)Compute a linear combination. | 
| FieldDerivativeStructure<T> | linearCombination(FieldDerivativeStructure<T>[] a,
                 FieldDerivativeStructure<T>[] b)Compute a linear combination. | 
| FieldDerivativeStructure<T> | linearCombination(FieldDerivativeStructure<T> a1,
                 FieldDerivativeStructure<T> b1,
                 FieldDerivativeStructure<T> a2,
                 FieldDerivativeStructure<T> b2)Compute a linear combination. | 
| FieldDerivativeStructure<T> | linearCombination(FieldDerivativeStructure<T> a1,
                 FieldDerivativeStructure<T> b1,
                 FieldDerivativeStructure<T> a2,
                 FieldDerivativeStructure<T> b2,
                 FieldDerivativeStructure<T> a3,
                 FieldDerivativeStructure<T> b3)Compute a linear combination. | 
| FieldDerivativeStructure<T> | linearCombination(FieldDerivativeStructure<T> a1,
                 FieldDerivativeStructure<T> b1,
                 FieldDerivativeStructure<T> a2,
                 FieldDerivativeStructure<T> b2,
                 FieldDerivativeStructure<T> a3,
                 FieldDerivativeStructure<T> b3,
                 FieldDerivativeStructure<T> a4,
                 FieldDerivativeStructure<T> b4)Compute a linear combination. | 
| FieldDerivativeStructure<T> | linearCombination(T[] a,
                 FieldDerivativeStructure<T>[] b)Compute a linear combination. | 
| FieldDerivativeStructure<T> | linearCombination(T a1,
                 FieldDerivativeStructure<T> b1,
                 T a2,
                 FieldDerivativeStructure<T> b2)Compute a linear combination. | 
| FieldDerivativeStructure<T> | linearCombination(T a1,
                 FieldDerivativeStructure<T> b1,
                 T a2,
                 FieldDerivativeStructure<T> b2,
                 T a3,
                 FieldDerivativeStructure<T> b3)Compute a linear combination. | 
| FieldDerivativeStructure<T> | linearCombination(T a1,
                 FieldDerivativeStructure<T> b1,
                 T a2,
                 FieldDerivativeStructure<T> b2,
                 T a3,
                 FieldDerivativeStructure<T> b3,
                 T a4,
                 FieldDerivativeStructure<T> b4)Compute a linear combination. | 
| FieldDerivativeStructure<T> | log()Natural logarithm. | 
| FieldDerivativeStructure<T> | log10()Base 10 logarithm. | 
| FieldDerivativeStructure<T> | log1p()Shifted natural logarithm. | 
| FieldDerivativeStructure<T> | multiply(double a)'×' operator. | 
| FieldDerivativeStructure<T> | multiply(FieldDerivativeStructure<T> a)Compute this × a. | 
| FieldDerivativeStructure<T> | multiply(int n)Compute n × this. | 
| FieldDerivativeStructure<T> | multiply(T a)'×' operator. | 
| FieldDerivativeStructure<T> | negate()Returns the additive inverse of  thiselement. | 
| FieldDerivativeStructure<T> | newInstance(double value)Create an instance corresponding to a constant real value. | 
| FieldDerivativeStructure<T> | pow(double p)Power operation. | 
| static <T extends RealFieldElement<T>> | pow(double a,
   FieldDerivativeStructure<T> x)Compute ax where a is a double and x a  FieldDerivativeStructure | 
| FieldDerivativeStructure<T> | pow(FieldDerivativeStructure<T> e)Power operation. | 
| FieldDerivativeStructure<T> | pow(int n)Integer power operation. | 
| FieldDerivativeStructure<T> | reciprocal()Returns the multiplicative inverse of  thiselement. | 
| FieldDerivativeStructure<T> | remainder(double a)IEEE remainder operator. | 
| FieldDerivativeStructure<T> | remainder(FieldDerivativeStructure<T> a)IEEE remainder operator. | 
| FieldDerivativeStructure<T> | remainder(T a)IEEE remainder operator. | 
| FieldDerivativeStructure<T> | rint()Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers. | 
| FieldDerivativeStructure<T> | rootN(int n)Nth root. | 
| FieldDerivativeStructure<T> | scalb(int n)Multiply the instance by a power of 2. | 
| FieldDerivativeStructure<T> | signum()Compute the signum of the instance. | 
| FieldDerivativeStructure<T> | sin()Sine operation. | 
| FieldSinCos<FieldDerivativeStructure<T>> | sinCos()Combined Sine and Cosine operation. | 
| FieldDerivativeStructure<T> | sinh()Hyperbolic sine operation. | 
| FieldDerivativeStructure<T> | sqrt()Square root. | 
| FieldDerivativeStructure<T> | subtract(double a)'-' operator. | 
| FieldDerivativeStructure<T> | subtract(FieldDerivativeStructure<T> a)Compute this - a. | 
| FieldDerivativeStructure<T> | subtract(T a)'-' operator. | 
| FieldDerivativeStructure<T> | tan()Tangent operation. | 
| FieldDerivativeStructure<T> | tanh()Hyperbolic tangent operation. | 
| T | taylor(double... delta)Evaluate Taylor expansion of a derivative structure. | 
| T | taylor(T... delta)Evaluate Taylor expansion of a derivative structure. | 
| FieldDerivativeStructure<T> | toDegrees()Convert radians to degrees, with error of less than 0.5 ULP | 
| FieldDerivativeStructure<T> | toRadians()Convert degrees to radians, with error of less than 0.5 ULP | 
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitroundisInfinite, isNaNpublic FieldDerivativeStructure<T> newInstance(double value)
 The default implementation creates the instance by adding
 the value to getField().getZero(). This is not optimal
 and does not work when called with a negative zero as the
 sign of zero is lost with the addition. The default implementation
 should therefore be overridden in concrete classes. The default
 implementation will be removed at the next major version.
 
newInstance in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>value - constant real valuepublic FDSFactory<T> getFactory()
public int getFreeParameters()
FieldDerivativegetFreeParameters in interface FieldDerivative<T extends RealFieldElement<T>,FieldDerivativeStructure<T extends RealFieldElement<T>>>public int getOrder()
FieldDerivativegetOrder in interface FieldDerivative<T extends RealFieldElement<T>,FieldDerivativeStructure<T extends RealFieldElement<T>>>public double getReal()
getReal in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public T getValue()
getValue in interface FieldDerivative<T extends RealFieldElement<T>,FieldDerivativeStructure<T extends RealFieldElement<T>>>getPartialDerivative(int...)public T getPartialDerivative(int... orders) throws MathIllegalArgumentException
getPartialDerivative in interface FieldDerivative<T extends RealFieldElement<T>,FieldDerivativeStructure<T extends RealFieldElement<T>>>orders - derivation orders with respect to each variable (if all orders are 0,
 the value is returned)MathIllegalArgumentException - if the numbers of variables does not
 match the instanceFieldDerivative.getValue()public T[] getAllDerivatives()
DSCompiler.getPartialDerivativeIndex(int...)public FieldDerivativeStructure<T> add(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> add(double a)
add in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> add(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
add in interface FieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - element to addMathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic FieldDerivativeStructure<T> subtract(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> subtract(double a)
subtract in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> subtract(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
subtract in interface FieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - element to subtractMathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic FieldDerivativeStructure<T> multiply(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> multiply(int n)
multiply in interface FieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>n - Number of times this must be added to itself.public FieldDerivativeStructure<T> multiply(double a)
multiply in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> multiply(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
multiply in interface FieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - element to multiplyMathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic FieldDerivativeStructure<T> divide(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> divide(double a)
divide in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> divide(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
divide in interface FieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - element to divide byMathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic FieldDerivativeStructure<T> remainder(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> remainder(double a)
remainder in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> remainder(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
remainder in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorMathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic FieldDerivativeStructure<T> negate()
this element.negate in interface FieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>this.public FieldDerivativeStructure<T> abs()
abs in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> ceil()
ceil in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> floor()
floor in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> rint()
rint in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> signum()
signum in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> copySign(T sign)
sign argument is treated as positive.sign - the sign for the returned valuesign argumentpublic FieldDerivativeStructure<T> copySign(double sign)
sign argument is treated as positive.copySign in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>sign - the sign for the returned valuesign argumentpublic FieldDerivativeStructure<T> copySign(FieldDerivativeStructure<T> sign)
sign argument is treated as positive.copySign in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>sign - the sign for the returned valuesign argumentpublic int getExponent()
For double numbers of the form 2x, the unbiased exponent is exactly x.
getExponent in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> scalb(int n)
scalb in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>n - power of 2public FieldDerivativeStructure<T> hypot(FieldDerivativeStructure<T> y) throws MathIllegalArgumentException
this and y
 - sqrt(this2 +y2)
 avoiding intermediate overflow or underflow.
 hypot in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>y - a valueMathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic static <T extends RealFieldElement<T>> FieldDerivativeStructure<T> hypot(FieldDerivativeStructure<T> x, FieldDerivativeStructure<T> y) throws MathIllegalArgumentException
x and y
 - sqrt(x2 +y2)
 avoiding intermediate overflow or underflow.
 T - the type of the field elementsx - a valuey - a valueMathIllegalArgumentException - if number of free parameters
 or orders do not match@SafeVarargs public final FieldDerivativeStructure<T> compose(T... f) throws MathIllegalArgumentException
f - array of value and derivatives of the function at
 the current point (i.e. [f(getValue()),
 f'(getValue()), f''(getValue())...]).MathIllegalArgumentException - if the number of derivatives
 in the array is not equal to order + 1public FieldDerivativeStructure<T> compose(double... f) throws MathIllegalArgumentException
f - array of value and derivatives of the function at
 the current point (i.e. [f(getValue()),
 f'(getValue()), f''(getValue())...]).MathIllegalArgumentException - if the number of derivatives
 in the array is not equal to order + 1public FieldDerivativeStructure<T> reciprocal()
this element.reciprocal in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>reciprocal in interface FieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>this.public FieldDerivativeStructure<T> sqrt()
sqrt in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> cbrt()
cbrt in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> rootN(int n)
rootN in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>n - order of the rootpublic Field<FieldDerivativeStructure<T>> getField()
Field to which the instance belongs.getField in interface FieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>Field to which the instance belongspublic static <T extends RealFieldElement<T>> FieldDerivativeStructure<T> pow(double a, FieldDerivativeStructure<T> x)
FieldDerivativeStructureT - the type of the field elementsa - number to exponentiatex - power to applypublic FieldDerivativeStructure<T> pow(double p)
pow in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>p - power to applypublic FieldDerivativeStructure<T> pow(int n)
pow in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>n - power to applypublic FieldDerivativeStructure<T> pow(FieldDerivativeStructure<T> e) throws MathIllegalArgumentException
pow in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>e - exponentMathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic FieldDerivativeStructure<T> exp()
exp in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> expm1()
expm1 in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> log()
log in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> log1p()
log1p in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> log10()
log10 in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> cos()
cos in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> sin()
sin in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldSinCos<FieldDerivativeStructure<T>> sinCos()
sinCos in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> tan()
tan in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> acos()
acos in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> asin()
asin in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> atan()
atan in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> atan2(FieldDerivativeStructure<T> x) throws MathIllegalArgumentException
atan2 in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>x - second argument of the arc tangentMathIllegalArgumentException - if number of free parameters or orders are inconsistentpublic static <T extends RealFieldElement<T>> FieldDerivativeStructure<T> atan2(FieldDerivativeStructure<T> y, FieldDerivativeStructure<T> x) throws MathIllegalArgumentException
T - the type of the field elementsy - first argument of the arc tangentx - second argument of the arc tangentMathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic FieldDerivativeStructure<T> cosh()
cosh in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> sinh()
sinh in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> tanh()
tanh in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> acosh()
acosh in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> asinh()
asinh in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> atanh()
atanh in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> toDegrees()
toDegrees in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> toRadians()
toRadians in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>@SafeVarargs public final T taylor(T... delta) throws MathRuntimeException
delta - parameters offsets (Δx, Δy, ...)MathRuntimeException - if factorials becomes too largepublic T taylor(double... delta) throws MathRuntimeException
delta - parameters offsets (Δx, Δy, ...)MathRuntimeException - if factorials becomes too largepublic FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T>[] a, FieldDerivativeStructure<T>[] b) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic FieldDerivativeStructure<T> linearCombination(T[] a, FieldDerivativeStructure<T>[] b) throws MathIllegalArgumentException
a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if arrays dimensions don't matchpublic FieldDerivativeStructure<T> linearCombination(double[] a, FieldDerivativeStructure<T>[] b) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if number of free parameters
 or orders do not matchpublic FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termMathIllegalArgumentException - if number of free parameters
 or orders do not matchCalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object), 
CalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)public FieldDerivativeStructure<T> linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2) throws MathIllegalArgumentException
a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termMathIllegalArgumentException - if number of free parameters or orders are inconsistentCalculusFieldElement.linearCombination(double, Object, double, Object, double, Object), 
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)public FieldDerivativeStructure<T> linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termMathIllegalArgumentException - if number of free parameters
 or orders do not matchCalculusFieldElement.linearCombination(double, Object, double, Object, double, Object), 
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)public FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termMathIllegalArgumentException - if number of free parameters
 or orders do not matchCalculusFieldElement.linearCombination(Object, Object, Object, Object), 
CalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)public FieldDerivativeStructure<T> linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3) throws MathIllegalArgumentException
a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termMathIllegalArgumentException - if number of free parameters or orders are inconsistentCalculusFieldElement.linearCombination(double, Object, double, Object), 
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)public FieldDerivativeStructure<T> linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termMathIllegalArgumentException - if number of free parameters
 or orders do not matchCalculusFieldElement.linearCombination(double, Object, double, Object), 
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)public FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3, FieldDerivativeStructure<T> a4, FieldDerivativeStructure<T> b4) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the fourth termb4 - second factor of the fourth termMathIllegalArgumentException - if number of free parameters
 or orders do not matchCalculusFieldElement.linearCombination(Object, Object, Object, Object), 
CalculusFieldElement.linearCombination(Object, Object, Object, Object, Object, Object)public FieldDerivativeStructure<T> linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3, T a4, FieldDerivativeStructure<T> b4) throws MathIllegalArgumentException
a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the third termb4 - second factor of the third termMathIllegalArgumentException - if number of free parameters or orders are inconsistentCalculusFieldElement.linearCombination(double, Object, double, Object), 
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object)public FieldDerivativeStructure<T> linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3, double a4, FieldDerivativeStructure<T> b4) throws MathIllegalArgumentException
linearCombination in interface CalculusFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the fourth termb4 - second factor of the fourth termMathIllegalArgumentException - if number of free parameters
 or orders do not matchCalculusFieldElement.linearCombination(double, Object, double, Object), 
CalculusFieldElement.linearCombination(double, Object, double, Object, double, Object)Copyright © 2016–2020 Hipparchus.org. All rights reserved.