Uses of Interface
org.hipparchus.clustering.Clusterable
-
Packages that use Clusterable Package Description org.hipparchus.clustering Clustering algorithms.org.hipparchus.clustering.evaluation Cluster evaluation methods. -
-
Uses of Clusterable in org.hipparchus.clustering
Classes in org.hipparchus.clustering with type parameters of type Clusterable Modifier and Type Class Description class
CentroidCluster<T extends Clusterable>
A Cluster used by centroid-based clustering algorithms.class
Cluster<T extends Clusterable>
Cluster holding a set ofClusterable
points.class
Clusterer<T extends Clusterable>
Base class for clustering algorithms.class
DBSCANClusterer<T extends Clusterable>
DBSCAN (density-based spatial clustering of applications with noise) algorithm.class
FuzzyKMeansClusterer<T extends Clusterable>
Fuzzy K-Means clustering algorithm.class
KMeansPlusPlusClusterer<T extends Clusterable>
Clustering algorithm based on David Arthur and Sergei Vassilvitski k-means++ algorithm.class
MultiKMeansPlusPlusClusterer<T extends Clusterable>
A wrapper around a k-means++ clustering algorithm which performs multiple trials and returns the best solution.Classes in org.hipparchus.clustering that implement Clusterable Modifier and Type Class Description class
DoublePoint
A simple implementation ofClusterable
for points with double coordinates.Methods in org.hipparchus.clustering that return Clusterable Modifier and Type Method Description Clusterable
CentroidCluster. getCenter()
Get the point chosen to be the center of this cluster.Methods in org.hipparchus.clustering with parameters of type Clusterable Modifier and Type Method Description protected double
Clusterer. distance(Clusterable p1, Clusterable p2)
Calculates the distance between twoClusterable
instances with the configuredDistanceMeasure
.Constructors in org.hipparchus.clustering with parameters of type Clusterable Constructor Description CentroidCluster(Clusterable center)
Build a cluster centered at a specified point. -
Uses of Clusterable in org.hipparchus.clustering.evaluation
Classes in org.hipparchus.clustering.evaluation with type parameters of type Clusterable Modifier and Type Class Description class
ClusterEvaluator<T extends Clusterable>
Base class for cluster evaluation methods.class
SumOfClusterVariances<T extends Clusterable>
Computes the sum of intra-cluster distance variances according to the formula: \] score = \sum\limits_{i=1}^n \sigma_i^2 \] where n is the number of clusters and \( \sigma_i^2 \) is the variance of intra-cluster distances of cluster \( c_i \).Methods in org.hipparchus.clustering.evaluation that return Clusterable Modifier and Type Method Description protected Clusterable
ClusterEvaluator. centroidOf(Cluster<T> cluster)
Computes the centroid for a cluster.Methods in org.hipparchus.clustering.evaluation with parameters of type Clusterable Modifier and Type Method Description protected double
ClusterEvaluator. distance(Clusterable p1, Clusterable p2)
Calculates the distance between twoClusterable
instances with the configuredDistanceMeasure
.
-