Uses of Interface
org.hipparchus.RealFieldElement
-
Packages that use RealFieldElement Package Description org.hipparchus.analysis Parent package for common numerical analysis procedures, including root finding, function interpolation and integration.org.hipparchus.analysis.differentiation This package holds the main interfaces and basic building block classes dealing with differentiation.org.hipparchus.analysis.polynomials Univariate real polynomials implementations, seen as differentiable univariate real functions.org.hipparchus.analysis.solvers Root finding algorithms, for univariate real functions.org.hipparchus.dfp Decimal floating point library for Javaorg.hipparchus.geometry.euclidean.threed This package provides basic 3D geometry components.org.hipparchus.linear Linear algebra support.org.hipparchus.ode This package provides classes to solve Ordinary Differential Equations problems.org.hipparchus.ode.events Eventsorg.hipparchus.ode.nonstiff This package provides classes to solve non-stiff Ordinary Differential Equations problems.org.hipparchus.ode.sampling This package provides classes to handle sampling steps during Ordinary Differential Equations integration.org.hipparchus.util Convenience routines and common data structures used throughout the Hipparchus library. -
-
Uses of RealFieldElement in org.hipparchus.analysis
Classes in org.hipparchus.analysis with type parameters of type RealFieldElement Modifier and Type Interface Description interface
RealFieldUnivariateFunction<T extends RealFieldElement<T>>
An interface representing a univariate real function.interface
RealFieldUnivariateMatrixFunction<T extends RealFieldElement<T>>
An interface representing a univariate matrix function.interface
RealFieldUnivariateVectorFunction<T extends RealFieldElement<T>>
An interface representing a univariate vectorial function for any field type.Methods in org.hipparchus.analysis with type parameters of type RealFieldElement Modifier and Type Method Description default <T extends RealFieldElement<T>>
RealFieldUnivariateFunction<T>FieldUnivariateFunction. toRealFieldUnivariateFunction(Field<T> field)
Convert to aRealFieldUnivariateFunction
with a specific type.default <T extends RealFieldElement<T>>
RealFieldUnivariateMatrixFunction<T>FieldUnivariateMatrixFunction. toRealFieldUnivariateMatrixFunction(Field<T> field)
Convert to aRealFieldUnivariateMatrixFunction
with a specific type.default <T extends RealFieldElement<T>>
RealFieldUnivariateVectorFunction<T>FieldUnivariateVectorFunction. toRealFieldUnivariateVectorFunction(Field<T> field)
Convert to aRealFieldUnivariateVectorFunction
with a specific type.<T extends RealFieldElement<T>>
TFieldUnivariateFunction. value(T x)
Compute the value of the function.<T extends RealFieldElement<T>>
T[][]FieldUnivariateMatrixFunction. value(T x)
Compute the value for the function.<T extends RealFieldElement<T>>
T[]FieldUnivariateVectorFunction. value(T x)
Compute the value for the function.Methods in org.hipparchus.analysis that return RealFieldElement Modifier and Type Method Description <T extends RealFieldElement<T>>
T[][]FieldUnivariateMatrixFunction. value(T x)
Compute the value for the function.<T extends RealFieldElement<T>>
T[]FieldUnivariateVectorFunction. value(T x)
Compute the value for the function.T[][]
RealFieldUnivariateMatrixFunction. value(T x)
Compute the value for the function.T[]
RealFieldUnivariateVectorFunction. value(T x)
Compute the value for the function. -
Uses of RealFieldElement in org.hipparchus.analysis.differentiation
Classes in org.hipparchus.analysis.differentiation with type parameters of type RealFieldElement Modifier and Type Class Description class
FDSFactory<T extends RealFieldElement<T>>
Factory forFieldDerivativeStructure
.class
FieldDerivativeStructure<T extends RealFieldElement<T>>
Class representing both the value and the differentials of a function.Classes in org.hipparchus.analysis.differentiation that implement RealFieldElement Modifier and Type Class Description class
DerivativeStructure
Class representing both the value and the differentials of a function.class
FieldDerivativeStructure<T extends RealFieldElement<T>>
Class representing both the value and the differentials of a function.class
SparseGradient
First derivative computation with large number of variables.Methods in org.hipparchus.analysis.differentiation with type parameters of type RealFieldElement Modifier and Type Method Description <T extends RealFieldElement<T>>
voidDSCompiler. acos(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute arc cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. acosh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute inverse hyperbolic cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. add(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform addition of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. asin(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute arc sine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. asinh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute inverse hyperbolic sine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. atan(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute arc tangent of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. atan2(T[] y, int yOffset, T[] x, int xOffset, T[] result, int resultOffset)
Compute two arguments arc tangent of a derivative structure.static <T extends RealFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure. atan2(FieldDerivativeStructure<T> y, FieldDerivativeStructure<T> x)
Two arguments arc tangent operation.<T extends RealFieldElement<T>>
voidDSCompiler. atanh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute inverse hyperbolic tangent of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. compose(T[] operand, int operandOffset, double[] f, T[] result, int resultOffset)
Compute composition of a derivative structure by a function.<T extends RealFieldElement<T>>
voidDSCompiler. compose(T[] operand, int operandOffset, T[] f, T[] result, int resultOffset)
Compute composition of a derivative structure by a function.<T extends RealFieldElement<T>>
voidDSCompiler. cos(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. cosh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute hyperbolic cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. divide(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform division of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. exp(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute exponential of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. expm1(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute exp(x) - 1 of a derivative structure.static <T extends RealFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure. hypot(FieldDerivativeStructure<T> x, FieldDerivativeStructure<T> y)
Returns the hypotenuse of a triangle with sidesx
andy
- sqrt(x2 +y2) avoiding intermediate overflow or underflow.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, double a4, T[] c4, int offset4, T[] result, int resultOffset)
Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, T[] result, int resultOffset)
Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, T[] result, int resultOffset)
Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T[] result, int resultOffset)
Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T[] result, int resultOffset)
Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T a4, T[] c4, int offset4, T[] result, int resultOffset)
Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. log(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute natural logarithm of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. log10(T[] operand, int operandOffset, T[] result, int resultOffset)
Computes base 10 logarithm of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. log1p(T[] operand, int operandOffset, T[] result, int resultOffset)
Computes shifted logarithm of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. multiply(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform multiplication of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. pow(double a, T[] operand, int operandOffset, T[] result, int resultOffset)
Compute power of a double to a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. pow(T[] operand, int operandOffset, double p, T[] result, int resultOffset)
Compute power of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. pow(T[] operand, int operandOffset, int n, T[] result, int resultOffset)
Compute integer power of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. pow(T[] x, int xOffset, T[] y, int yOffset, T[] result, int resultOffset)
Compute power of a derivative structure.static <T extends RealFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure. pow(double a, FieldDerivativeStructure<T> x)
Compute ax where a is a double and x aFieldDerivativeStructure
<T extends RealFieldElement<T>>
voidDSCompiler. remainder(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform remainder of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. rootN(T[] operand, int operandOffset, int n, T[] result, int resultOffset)
Compute nth root of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. sin(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute sine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. sinCos(T[] operand, int operandOffset, T[] sin, int sinOffset, T[] cos, int cosOffset)
Compute combined sine and cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. sinh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute hyperbolic sine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. subtract(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform subtraction of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. tan(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute tangent of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. tanh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute hyperbolic tangent of a derivative structure.<T extends RealFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, double... delta)
Evaluate Taylor expansion of a derivative structure.<T extends RealFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, T... delta)
Evaluate Taylor expansion of a derivative structure.Methods in org.hipparchus.analysis.differentiation that return RealFieldElement Modifier and Type Method Description T[]
FieldDerivativeStructure. getAllDerivatives()
Get all partial derivatives.Methods in org.hipparchus.analysis.differentiation with parameters of type RealFieldElement Modifier and Type Method Description <T extends RealFieldElement<T>>
voidDSCompiler. acos(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute arc cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. acosh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute inverse hyperbolic cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. add(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform addition of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. asin(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute arc sine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. asinh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute inverse hyperbolic sine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. atan(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute arc tangent of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. atan2(T[] y, int yOffset, T[] x, int xOffset, T[] result, int resultOffset)
Compute two arguments arc tangent of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. atanh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute inverse hyperbolic tangent of a derivative structure.FieldDerivativeStructure<T>
FDSFactory. build(T... derivatives)
Build aFieldDerivativeStructure
from all its derivatives.<T extends RealFieldElement<T>>
voidDSCompiler. compose(T[] operand, int operandOffset, double[] f, T[] result, int resultOffset)
Compute composition of a derivative structure by a function.<T extends RealFieldElement<T>>
voidDSCompiler. compose(T[] operand, int operandOffset, T[] f, T[] result, int resultOffset)
Compute composition of a derivative structure by a function.FieldDerivativeStructure<T>
FieldDerivativeStructure. compose(T... f)
Compute composition of the instance by a univariate function.<T extends RealFieldElement<T>>
voidDSCompiler. cos(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. cosh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute hyperbolic cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. divide(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform division of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. exp(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute exponential of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. expm1(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute exp(x) - 1 of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, double a4, T[] c4, int offset4, T[] result, int resultOffset)
Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, T[] result, int resultOffset)
Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, T[] result, int resultOffset)
Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T[] result, int resultOffset)
Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T[] result, int resultOffset)
Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T a4, T[] c4, int offset4, T[] result, int resultOffset)
Compute linear combination.FieldDerivativeStructure<T>
FieldDerivativeStructure. linearCombination(T[] a, FieldDerivativeStructure<T>[] b)
Compute a linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. log(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute natural logarithm of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. log10(T[] operand, int operandOffset, T[] result, int resultOffset)
Computes base 10 logarithm of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. log1p(T[] operand, int operandOffset, T[] result, int resultOffset)
Computes shifted logarithm of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. multiply(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform multiplication of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. pow(double a, T[] operand, int operandOffset, T[] result, int resultOffset)
Compute power of a double to a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. pow(T[] operand, int operandOffset, double p, T[] result, int resultOffset)
Compute power of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. pow(T[] operand, int operandOffset, int n, T[] result, int resultOffset)
Compute integer power of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. pow(T[] x, int xOffset, T[] y, int yOffset, T[] result, int resultOffset)
Compute power of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. remainder(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform remainder of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. rootN(T[] operand, int operandOffset, int n, T[] result, int resultOffset)
Compute nth root of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. sin(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute sine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. sinCos(T[] operand, int operandOffset, T[] sin, int sinOffset, T[] cos, int cosOffset)
Compute combined sine and cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. sinh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute hyperbolic sine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. subtract(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)
Perform subtraction of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. tan(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute tangent of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. tanh(T[] operand, int operandOffset, T[] result, int resultOffset)
Compute hyperbolic tangent of a derivative structure.<T extends RealFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, double... delta)
Evaluate Taylor expansion of a derivative structure.<T extends RealFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, T... delta)
Evaluate Taylor expansion of a derivative structure.T
FieldDerivativeStructure. taylor(T... delta)
Evaluate Taylor expansion of a derivative structure. -
Uses of RealFieldElement in org.hipparchus.analysis.polynomials
Methods in org.hipparchus.analysis.polynomials with type parameters of type RealFieldElement Modifier and Type Method Description <T extends RealFieldElement<T>>
TPolynomialFunction. value(T t)
Compute the value of the function.<T extends RealFieldElement<T>>
TPolynomialFunctionNewtonForm. value(T t)
Compute the value of the function.<T extends RealFieldElement<T>>
TPolynomialSplineFunction. value(T t)
Compute the value of the function. -
Uses of RealFieldElement in org.hipparchus.analysis.solvers
Classes in org.hipparchus.analysis.solvers with type parameters of type RealFieldElement Modifier and Type Interface Description interface
BracketedRealFieldUnivariateSolver<T extends RealFieldElement<T>>
Interface for(univariate real) root-finding algorithms
that maintain a bracketed solution.static class
BracketedRealFieldUnivariateSolver.Interval<T extends RealFieldElement<T>>
An interval of a function that brackets a root.class
FieldBracketingNthOrderBrentSolver<T extends RealFieldElement<T>>
This class implements a modification of the Brent algorithm.Methods in org.hipparchus.analysis.solvers with type parameters of type RealFieldElement Modifier and Type Method Description static <T extends RealFieldElement<T>>
T[]UnivariateSolverUtils. bracket(RealFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound)
This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
withq
andr
set to 1.0 andmaximumIterations
set toInteger.MAX_VALUE
.static <T extends RealFieldElement<T>>
T[]UnivariateSolverUtils. bracket(RealFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, int maximumIterations)
This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
withq
andr
set to 1.0.static <T extends RealFieldElement<T>>
T[]UnivariateSolverUtils. bracket(RealFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, T q, T r, int maximumIterations)
This method attempts to find two values a and b satisfyinglowerBound <= a < initial < b <= upperBound
f(a) * f(b) <= 0
Iff
is continuous on[a,b]
, this means thata
andb
bracket a root off
.Methods in org.hipparchus.analysis.solvers that return RealFieldElement Modifier and Type Method Description static <T extends RealFieldElement<T>>
T[]UnivariateSolverUtils. bracket(RealFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound)
This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
withq
andr
set to 1.0 andmaximumIterations
set toInteger.MAX_VALUE
.static <T extends RealFieldElement<T>>
T[]UnivariateSolverUtils. bracket(RealFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, int maximumIterations)
This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
withq
andr
set to 1.0.static <T extends RealFieldElement<T>>
T[]UnivariateSolverUtils. bracket(RealFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, T q, T r, int maximumIterations)
This method attempts to find two values a and b satisfyinglowerBound <= a < initial < b <= upperBound
f(a) * f(b) <= 0
Iff
is continuous on[a,b]
, this means thata
andb
bracket a root off
. -
Uses of RealFieldElement in org.hipparchus.dfp
Classes in org.hipparchus.dfp that implement RealFieldElement Modifier and Type Class Description class
Dfp
Decimal floating point library for Javaclass
DfpDec
Subclass ofDfp
which hides the radix-10000 artifacts of the superclass. -
Uses of RealFieldElement in org.hipparchus.geometry.euclidean.threed
Classes in org.hipparchus.geometry.euclidean.threed with type parameters of type RealFieldElement Modifier and Type Class Description class
FieldLine<T extends RealFieldElement<T>>
The class represent lines in a three dimensional space.class
FieldRotation<T extends RealFieldElement<T>>
This class is a re-implementation ofRotation
usingRealFieldElement
.class
FieldVector3D<T extends RealFieldElement<T>>
This class is a re-implementation ofVector3D
usingRealFieldElement
.Methods in org.hipparchus.geometry.euclidean.threed with type parameters of type RealFieldElement Modifier and Type Method Description static <T extends RealFieldElement<T>>
TFieldVector3D. angle(FieldVector3D<T> v1, FieldVector3D<T> v2)
Compute the angular separation between two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D. angle(FieldVector3D<T> v1, Vector3D v2)
Compute the angular separation between two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D. angle(Vector3D v1, FieldVector3D<T> v2)
Compute the angular separation between two vectors.static <T extends RealFieldElement<T>>
FieldRotation<T>FieldRotation. applyInverseTo(Rotation rOuter, FieldRotation<T> rInner)
Apply the inverse of a rotation to another rotation.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldRotation. applyInverseTo(Rotation r, FieldVector3D<T> u)
Apply the inverse of a rotation to a vector.static <T extends RealFieldElement<T>>
FieldRotation<T>FieldRotation. applyTo(Rotation r1, FieldRotation<T> rInner)
Apply a rotation to another rotation.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldRotation. applyTo(Rotation r, FieldVector3D<T> u)
Apply a rotation to a vector.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. crossProduct(FieldVector3D<T> v1, FieldVector3D<T> v2)
Compute the cross-product of two vectors.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. crossProduct(FieldVector3D<T> v1, Vector3D v2)
Compute the cross-product of two vectors.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. crossProduct(Vector3D v1, FieldVector3D<T> v2)
Compute the cross-product of two vectors.static <T extends RealFieldElement<T>>
TFieldRotation. distance(FieldRotation<T> r1, FieldRotation<T> r2)
Compute the distance between two rotations.static <T extends RealFieldElement<T>>
TFieldVector3D. distance(FieldVector3D<T> v1, FieldVector3D<T> v2)
Compute the distance between two vectors according to the L2 norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distance(FieldVector3D<T> v1, Vector3D v2)
Compute the distance between two vectors according to the L2 norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distance(Vector3D v1, FieldVector3D<T> v2)
Compute the distance between two vectors according to the L2 norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distance1(FieldVector3D<T> v1, FieldVector3D<T> v2)
Compute the distance between two vectors according to the L1 norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distance1(FieldVector3D<T> v1, Vector3D v2)
Compute the distance between two vectors according to the L1 norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distance1(Vector3D v1, FieldVector3D<T> v2)
Compute the distance between two vectors according to the L1 norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distanceInf(FieldVector3D<T> v1, FieldVector3D<T> v2)
Compute the distance between two vectors according to the L∞ norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distanceInf(FieldVector3D<T> v1, Vector3D v2)
Compute the distance between two vectors according to the L∞ norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distanceInf(Vector3D v1, FieldVector3D<T> v2)
Compute the distance between two vectors according to the L∞ norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distanceSq(FieldVector3D<T> v1, FieldVector3D<T> v2)
Compute the square of the distance between two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D. distanceSq(FieldVector3D<T> v1, Vector3D v2)
Compute the square of the distance between two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D. distanceSq(Vector3D v1, FieldVector3D<T> v2)
Compute the square of the distance between two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D. dotProduct(FieldVector3D<T> v1, FieldVector3D<T> v2)
Compute the dot-product of two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D. dotProduct(FieldVector3D<T> v1, Vector3D v2)
Compute the dot-product of two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D. dotProduct(Vector3D v1, FieldVector3D<T> v2)
Compute the dot-product of two vectors.static <T extends RealFieldElement<T>>
FieldRotation<T>FieldRotation. getIdentity(Field<T> field)
Get identity rotation.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getMinusI(Field<T> field)
Get opposite of the first canonical vector (coordinates: -1, 0, 0).static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getMinusJ(Field<T> field)
Get opposite of the second canonical vector (coordinates: 0, -1, 0).static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getMinusK(Field<T> field)
Get opposite of the third canonical vector (coordinates: 0, 0, -1).static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getNaN(Field<T> field)
Get a vector with all coordinates set to NaN.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getNegativeInfinity(Field<T> field)
Get a vector with all coordinates set to negative infinity.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getPlusI(Field<T> field)
Get first canonical vector (coordinates: 1, 0, 0).static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getPlusJ(Field<T> field)
Get second canonical vector (coordinates: 0, 1, 0).static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getPlusK(Field<T> field)
Get third canonical vector (coordinates: 0, 0, 1).static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getPositiveInfinity(Field<T> field)
Get a vector with all coordinates set to positive infinity.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getZero(Field<T> field)
Get null vector (coordinates: 0, 0, 0).Methods in org.hipparchus.geometry.euclidean.threed that return RealFieldElement Modifier and Type Method Description T[]
FieldRotation. getAngles(RotationOrder order)
Deprecated.as of 3.6, replaced withFieldRotation.getAngles(RotationOrder, RotationConvention)
T[]
FieldRotation. getAngles(RotationOrder order, RotationConvention convention)
Get the Cardan or Euler angles corresponding to the instance.T[][]
FieldRotation. getMatrix()
Get the 3X3 matrix corresponding to the instanceT[]
FieldVector3D. toArray()
Get the vector coordinates as a dimension 3 array.Methods in org.hipparchus.geometry.euclidean.threed with parameters of type RealFieldElement Modifier and Type Method Description void
FieldRotation. applyInverseTo(double[] in, T[] out)
Apply the inverse of the rotation to a vector stored in an array.void
FieldRotation. applyInverseTo(T[] in, T[] out)
Apply the inverse of the rotation to a vector stored in an array.void
FieldRotation. applyTo(double[] in, T[] out)
Apply the rotation to a vector stored in an array.void
FieldRotation. applyTo(T[] in, T[] out)
Apply the rotation to a vector stored in an array.Constructors in org.hipparchus.geometry.euclidean.threed with parameters of type RealFieldElement Constructor Description FieldRotation(T[][] m, double threshold)
Build a rotation from a 3X3 matrix.FieldVector3D(T[] v)
Simple constructor. -
Uses of RealFieldElement in org.hipparchus.linear
Classes in org.hipparchus.linear with type parameters of type RealFieldElement Modifier and Type Class Description class
FieldQRDecomposition<T extends RealFieldElement<T>>
Calculates the QR-decomposition of a field matrix.Methods in org.hipparchus.linear with parameters of type RealFieldElement Modifier and Type Method Description protected void
FieldQRDecomposition. decompose(T[][] matrix)
Decompose matrix.protected void
FieldQRDecomposition. performHouseholderReflection(int minor, T[][] matrix)
Perform Householder reflection for a minor A(minor, minor) of A. -
Uses of RealFieldElement in org.hipparchus.ode
Classes in org.hipparchus.ode with type parameters of type RealFieldElement Modifier and Type Class Description class
AbstractFieldIntegrator<T extends RealFieldElement<T>>
Base class managing common boilerplate for all integrators.class
FieldDenseOutputModel<T extends RealFieldElement<T>>
This class stores all information provided by an ODE integrator during the integration process and build a continuous model of the solution from this.class
FieldEquationsMapper<T extends RealFieldElement<T>>
Class mapping the part of a complete state or derivative that pertains to a set of differential equations.class
FieldExpandableODE<T extends RealFieldElement<T>>
This class represents a combined set of first order differential equations, with at least a primary set of equations expandable by some sets of secondary equations.interface
FieldODEIntegrator<T extends RealFieldElement<T>>
This interface represents a first order integrator for differential equations.class
FieldODEState<T extends RealFieldElement<T>>
Container for time, main and secondary state vectors.class
FieldODEStateAndDerivative<T extends RealFieldElement<T>>
Container for time, main and secondary state vectors as well as their derivatives.interface
FieldOrdinaryDifferentialEquation<T extends RealFieldElement<T>>
This interface represents a first order differential equations set.interface
FieldSecondaryODE<T extends RealFieldElement<T>>
This interface allows users to add secondary differential equations to a primary set of differential equations.class
MultistepFieldIntegrator<T extends RealFieldElement<T>>
This class is the base class for multistep integrators for Ordinary Differential Equations.Fields in org.hipparchus.ode declared as RealFieldElement Modifier and Type Field Description protected T[]
MultistepFieldIntegrator. scaled
First scaled derivative (h y').Methods in org.hipparchus.ode that return RealFieldElement Modifier and Type Method Description T[]
AbstractFieldIntegrator. computeDerivatives(T t, T[] y)
Compute the derivatives and check the number of evaluations.T[]
FieldExpandableODE. computeDerivatives(T t, T[] y)
Get the current time derivative of the complete state vector.T[]
FieldOrdinaryDifferentialEquation. computeDerivatives(T t, T[] y)
Get the current time derivative of the state vector.T[]
FieldSecondaryODE. computeDerivatives(T t, T[] primary, T[] primaryDot, T[] secondary)
Compute the derivatives related to the secondary state parameters.protected T[][]
FieldODEState. copy(T[][] original)
Copy a two-dimensions array.T[]
FieldEquationsMapper. extractEquationData(int index, T[] complete)
Extract equation data from a complete state or derivative array.T[]
FieldODEStateAndDerivative. getCompleteDerivative()
Get complete derivative at time.T[]
FieldODEState. getCompleteState()
Get complete state at time.T[]
FieldODEStateAndDerivative. getPrimaryDerivative()
Get derivative of the primary state at time.T[]
FieldODEState. getPrimaryState()
Get primary state at time.T[]
FieldODEStateAndDerivative. getSecondaryDerivative(int index)
Get derivative of the secondary state at time.T[]
FieldODEState. getSecondaryState(int index)
Get secondary state at time.T[]
FieldODEState. getState()
Deprecated.as of 1.0, replaced withFieldODEState.getPrimaryState()
T[]
FieldEquationsMapper. mapDerivative(FieldODEStateAndDerivative<T> state)
Deprecated.as of 1.0, replaced withFieldODEStateAndDerivative.getCompleteDerivative()
T[]
FieldEquationsMapper. mapState(FieldODEState<T> state)
Deprecated.as of 1.0, replaced withFieldODEState.getCompleteState()
Methods in org.hipparchus.ode with parameters of type RealFieldElement Modifier and Type Method Description T[]
AbstractFieldIntegrator. computeDerivatives(T t, T[] y)
Compute the derivatives and check the number of evaluations.T[]
FieldExpandableODE. computeDerivatives(T t, T[] y)
Get the current time derivative of the complete state vector.T[]
FieldOrdinaryDifferentialEquation. computeDerivatives(T t, T[] y)
Get the current time derivative of the state vector.T[]
FieldSecondaryODE. computeDerivatives(T t, T[] primary, T[] primaryDot, T[] secondary)
Compute the derivatives related to the secondary state parameters.protected T[][]
FieldODEState. copy(T[][] original)
Copy a two-dimensions array.T[]
FieldEquationsMapper. extractEquationData(int index, T[] complete)
Extract equation data from a complete state or derivative array.default void
FieldOrdinaryDifferentialEquation. init(T t0, T[] y0, T finalTime)
Initialize equations at the start of an ODE integration.default void
FieldSecondaryODE. init(T t0, T[] primary0, T[] secondary0, T finalTime)
Initialize equations at the start of an ODE integration.protected abstract Array2DRowFieldMatrix<T>
MultistepFieldIntegrator. initializeHighOrderDerivatives(T h, T[] t, T[][] y, T[][] yDot)
Initialize the high order scaled derivatives at step start.void
FieldEquationsMapper. insertEquationData(int index, T[] equationData, T[] complete)
Insert equation data into a complete state or derivative array.FieldODEStateAndDerivative<T>
FieldEquationsMapper. mapStateAndDerivative(T t, T[] y, T[] yDot)
Map flat arrays to a state and derivative.Constructors in org.hipparchus.ode with parameters of type RealFieldElement Constructor Description FieldODEState(T time, T[] primaryState)
Simple constructor.FieldODEState(T time, T[] primaryState, T[][] secondaryState)
Simple constructor.FieldODEStateAndDerivative(T time, T[] primaryState, T[] primaryDerivative)
Simple constructor.FieldODEStateAndDerivative(T time, T[] primaryState, T[] primaryDerivative, T[][] secondaryState, T[][] secondaryDerivative)
Simple constructor. -
Uses of RealFieldElement in org.hipparchus.ode.events
Classes in org.hipparchus.ode.events with type parameters of type RealFieldElement Modifier and Type Class Description class
FieldEventState<T extends RealFieldElement<T>>
This class handles the state for oneevent handler
during integration steps.static class
FieldEventState.EventOccurrence<T extends RealFieldElement<T>>
Class to hold the data related to an event occurrence that is needed to decide how to modify integration.interface
FieldODEEventHandler<T extends RealFieldElement<T>>
This interface represents a handler for discrete events triggered during ODE integration. -
Uses of RealFieldElement in org.hipparchus.ode.nonstiff
Classes in org.hipparchus.ode.nonstiff with type parameters of type RealFieldElement Modifier and Type Class Description class
AdamsBashforthFieldIntegrator<T extends RealFieldElement<T>>
This class implements explicit Adams-Bashforth integrators for Ordinary Differential Equations.class
AdamsFieldIntegrator<T extends RealFieldElement<T>>
Base class forAdams-Bashforth
andAdams-Moulton
integrators.class
AdamsMoultonFieldIntegrator<T extends RealFieldElement<T>>
This class implements implicit Adams-Moulton integrators for Ordinary Differential Equations.class
AdamsNordsieckFieldTransformer<T extends RealFieldElement<T>>
Transformer to Nordsieck vectors for Adams integrators.class
AdaptiveStepsizeFieldIntegrator<T extends RealFieldElement<T>>
This abstract class holds the common part of all adaptive stepsize integrators for Ordinary Differential Equations.class
ClassicalRungeKuttaFieldIntegrator<T extends RealFieldElement<T>>
This class implements the classical fourth order Runge-Kutta integrator for Ordinary Differential Equations (it is the most often used Runge-Kutta method).class
DormandPrince54FieldIntegrator<T extends RealFieldElement<T>>
This class implements the 5(4) Dormand-Prince integrator for Ordinary Differential Equations.class
DormandPrince853FieldIntegrator<T extends RealFieldElement<T>>
This class implements the 8(5,3) Dormand-Prince integrator for Ordinary Differential Equations.class
EmbeddedRungeKuttaFieldIntegrator<T extends RealFieldElement<T>>
This class implements the common part of all embedded Runge-Kutta integrators for Ordinary Differential Equations.class
EulerFieldIntegrator<T extends RealFieldElement<T>>
This class implements a simple Euler integrator for Ordinary Differential Equations.interface
FieldButcherArrayProvider<T extends RealFieldElement<T>>
This interface represents an integrator based on Butcher arrays.class
GillFieldIntegrator<T extends RealFieldElement<T>>
This class implements the Gill fourth order Runge-Kutta integrator for Ordinary Differential Equations .class
HighamHall54FieldIntegrator<T extends RealFieldElement<T>>
This class implements the 5(4) Higham and Hall integrator for Ordinary Differential Equations.class
LutherFieldIntegrator<T extends RealFieldElement<T>>
This class implements the Luther sixth order Runge-Kutta integrator for Ordinary Differential Equations.class
MidpointFieldIntegrator<T extends RealFieldElement<T>>
This class implements a second order Runge-Kutta integrator for Ordinary Differential Equations.class
RungeKuttaFieldIntegrator<T extends RealFieldElement<T>>
This class implements the common part of all fixed step Runge-Kutta integrators for Ordinary Differential Equations.class
ThreeEighthesFieldIntegrator<T extends RealFieldElement<T>>
This class implements the 3/8 fourth order Runge-Kutta integrator for Ordinary Differential Equations.Methods in org.hipparchus.ode.nonstiff with type parameters of type RealFieldElement Modifier and Type Method Description static <T extends RealFieldElement<T>>
AdamsNordsieckFieldTransformer<T>AdamsNordsieckFieldTransformer. getInstance(Field<T> field, int nSteps)
Get the Nordsieck transformer for a given field and number of steps.Methods in org.hipparchus.ode.nonstiff that return RealFieldElement Modifier and Type Method Description T[][]
ClassicalRungeKuttaFieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
DormandPrince54FieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
DormandPrince853FieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
EulerFieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
FieldButcherArrayProvider. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
GillFieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
HighamHall54FieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
LutherFieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
MidpointFieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[][]
ThreeEighthesFieldIntegrator. getA()
Get the internal weights from Butcher array (without the first empty row).T[]
ClassicalRungeKuttaFieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
DormandPrince54FieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
DormandPrince853FieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
EulerFieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
FieldButcherArrayProvider. getB()
Get the external weights for the high order method from Butcher array.T[]
GillFieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
HighamHall54FieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
LutherFieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
MidpointFieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
ThreeEighthesFieldIntegrator. getB()
Get the external weights for the high order method from Butcher array.T[]
ClassicalRungeKuttaFieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
DormandPrince54FieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
DormandPrince853FieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
EulerFieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
FieldButcherArrayProvider. getC()
Get the time steps from Butcher array (without the first zero).T[]
GillFieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
HighamHall54FieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
LutherFieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
MidpointFieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
ThreeEighthesFieldIntegrator. getC()
Get the time steps from Butcher array (without the first zero).T[]
RungeKuttaFieldIntegrator. singleStep(FieldOrdinaryDifferentialEquation<T> equations, T t0, T[] y0, T t)
Fast computation of a single step of ODE integration.Methods in org.hipparchus.ode.nonstiff with parameters of type RealFieldElement Modifier and Type Method Description protected org.hipparchus.ode.nonstiff.ClassicalRungeKuttaFieldStateInterpolator<T>
ClassicalRungeKuttaFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected org.hipparchus.ode.nonstiff.DormandPrince54FieldStateInterpolator<T>
DormandPrince54FieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected org.hipparchus.ode.nonstiff.DormandPrince853FieldStateInterpolator<T>
DormandPrince853FieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected abstract org.hipparchus.ode.nonstiff.RungeKuttaFieldStateInterpolator<T>
EmbeddedRungeKuttaFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected org.hipparchus.ode.nonstiff.EulerFieldStateInterpolator<T>
EulerFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected org.hipparchus.ode.nonstiff.GillFieldStateInterpolator<T>
GillFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected org.hipparchus.ode.nonstiff.HighamHall54FieldStateInterpolator<T>
HighamHall54FieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected org.hipparchus.ode.nonstiff.LutherFieldStateInterpolator<T>
LutherFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected org.hipparchus.ode.nonstiff.MidpointFieldStateInterpolator<T>
MidpointFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected abstract org.hipparchus.ode.nonstiff.RungeKuttaFieldStateInterpolator<T>
RungeKuttaFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected org.hipparchus.ode.nonstiff.ThreeEighthesFieldStateInterpolator<T>
ThreeEighthesFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)
Create an interpolator.protected T
DormandPrince54FieldIntegrator. estimateError(T[][] yDotK, T[] y0, T[] y1, T h)
Compute the error ratio.protected T
DormandPrince853FieldIntegrator. estimateError(T[][] yDotK, T[] y0, T[] y1, T h)
Compute the error ratio.protected abstract T
EmbeddedRungeKuttaFieldIntegrator. estimateError(T[][] yDotK, T[] y0, T[] y1, T h)
Compute the error ratio.protected T
HighamHall54FieldIntegrator. estimateError(T[][] yDotK, T[] y0, T[] y1, T h)
Compute the error ratio.protected Array2DRowFieldMatrix<T>
AdamsFieldIntegrator. initializeHighOrderDerivatives(T h, T[] t, T[][] y, T[][] yDot)
Initialize the high order scaled derivatives at step start.Array2DRowFieldMatrix<T>
AdamsNordsieckFieldTransformer. initializeHighOrderDerivatives(T h, T[] t, T[][] y, T[][] yDot)
Initialize the high order scaled derivatives at step start.T
AdaptiveStepsizeFieldIntegrator. initializeStep(boolean forward, int order, T[] scale, FieldODEStateAndDerivative<T> state0, FieldEquationsMapper<T> mapper)
Initialize the integration step.T[]
RungeKuttaFieldIntegrator. singleStep(FieldOrdinaryDifferentialEquation<T> equations, T t0, T[] y0, T t)
Fast computation of a single step of ODE integration.void
AdamsFieldIntegrator. updateHighOrderDerivativesPhase2(T[] start, T[] end, Array2DRowFieldMatrix<T> highOrder)
Update the high order scaled derivatives Adams integrators (phase 2).void
AdamsNordsieckFieldTransformer. updateHighOrderDerivativesPhase2(T[] start, T[] end, Array2DRowFieldMatrix<T> highOrder)
Update the high order scaled derivatives Adams integrators (phase 2). -
Uses of RealFieldElement in org.hipparchus.ode.sampling
Classes in org.hipparchus.ode.sampling with type parameters of type RealFieldElement Modifier and Type Class Description class
AbstractFieldODEStateInterpolator<T extends RealFieldElement<T>>
This abstract class represents an interpolator over the last step during an ODE integration.interface
FieldODEFixedStepHandler<T extends RealFieldElement<T>>
This interface represents a handler that should be called after each successful fixed step.interface
FieldODEStateInterpolator<T extends RealFieldElement<T>>
This interface represents an interpolator over the last step during an ODE integration.interface
FieldODEStepHandler<T extends RealFieldElement<T>>
This interface represents a handler that should be called after each successful step.class
FieldStepNormalizer<T extends RealFieldElement<T>>
This class wraps an object implementingFieldODEFixedStepHandler
into aFieldODEStepHandler
. -
Uses of RealFieldElement in org.hipparchus.util
Classes in org.hipparchus.util with type parameters of type RealFieldElement Modifier and Type Class Description class
FieldTuple<T extends RealFieldElement<T>>
This class allows to perform the same computation of all components of a Tuple at once.Classes in org.hipparchus.util that implement RealFieldElement Modifier and Type Class Description class
Decimal64
This class wraps adouble
value in an object.class
FieldTuple<T extends RealFieldElement<T>>
This class allows to perform the same computation of all components of a Tuple at once.class
Tuple
This class allows to perform the same computation of all components of a Tuple at once.Methods in org.hipparchus.util with type parameters of type RealFieldElement Modifier and Type Method Description static <T extends RealFieldElement<T>>
TFastMath. abs(T x)
Absolute value.static <T extends RealFieldElement<T>>
TFastMath. acos(T x)
Compute the arc cosine of a number.static <T extends RealFieldElement<T>>
TFastMath. acosh(T a)
Compute the inverse hyperbolic cosine of a number.static <T extends RealFieldElement<T>>
TFastMath. asin(T x)
Compute the arc sine of a number.static <T extends RealFieldElement<T>>
TFastMath. asinh(T a)
Compute the inverse hyperbolic sine of a number.static <T extends RealFieldElement<T>>
TFastMath. atan(T x)
Arctangent functionstatic <T extends RealFieldElement<T>>
TFastMath. atan2(T y, T x)
Two arguments arctangent functionstatic <T extends RealFieldElement<T>>
TFastMath. atanh(T a)
Compute the inverse hyperbolic tangent of a number.static <T extends RealFieldElement<T>>
TFastMath. cbrt(T x)
Compute the cubic root of a number.static <T extends RealFieldElement<T>>
TFastMath. ceil(T x)
Get the smallest whole number larger than x.static <T extends RealFieldElement<T>>
TFastMath. copySign(T magnitude, double sign)
Returns the first argument with the sign of the second argument.static <T extends RealFieldElement<T>>
TFastMath. copySign(T magnitude, T sign)
Returns the first argument with the sign of the second argument.static <T extends RealFieldElement<T>>
TFastMath. cos(T x)
Cosine function.static <T extends RealFieldElement<T>>
TFastMath. cosh(T x)
Compute the hyperbolic cosine of a number.static <T extends RealFieldElement<T>>
TFastMath. exp(T x)
Exponential function.static <T extends RealFieldElement<T>>
TFastMath. expm1(T x)
Compute exp(x) - 1static <T extends RealFieldElement<T>>
TFastMath. floor(T x)
Get the largest whole number smaller than x.static <T extends RealFieldElement<T>>
TFastMath. hypot(T x, T y)
Returns the hypotenuse of a triangle with sidesx
andy
- sqrt(x2 +y2)
avoiding intermediate overflow or underflow.static <T extends RealFieldElement<T>>
TFastMath. IEEEremainder(T dividend, double divisor)
Computes the remainder as prescribed by the IEEE 754 standard.static <T extends RealFieldElement<T>>
TFastMath. IEEEremainder(T dividend, T divisor)
Computes the remainder as prescribed by the IEEE 754 standard.static <T extends RealFieldElement<T>>
TFastMath. log(T x)
Natural logarithm.static <T extends RealFieldElement<T>>
TFastMath. log10(T x)
Compute the base 10 logarithm.static <T extends RealFieldElement<T>>
TFastMath. log1p(T x)
Computes log(1 + x).static <T extends RealFieldElement<T>>
TFastMath. max(T a, T b)
Compute the maximum of two valuesstatic <T extends RealFieldElement<T>>
TMathUtils. max(T e1, T e2)
Find the maximum of two field elements.static <T extends RealFieldElement<T>>
TFastMath. min(T a, T b)
Compute the minimum of two valuesstatic <T extends RealFieldElement<T>>
TMathUtils. min(T e1, T e2)
Find the minimum of two field elements.static <T extends RealFieldElement<T>>
TFastMath. pow(T d, int e)
Raise a double to an int power.static <T extends RealFieldElement<T>>
TFastMath. pow(T x, T y)
Power function.static <T extends RealFieldElement<T>>
TFastMath. rint(T x)
Get the whole number that is the nearest to x, or the even one if x is exactly half way between two integers.static <T extends RealFieldElement<T>>
longFastMath. round(T x)
Get the closest long to x.static <T extends RealFieldElement<T>>
TFastMath. scalb(T d, int n)
Multiply a double number by a power of 2.static <T extends RealFieldElement<T>>
TFastMath. signum(T a)
Compute the signum of a number.static <T extends RealFieldElement<T>>
TFastMath. sin(T x)
Sine function.static <T extends RealFieldElement<T>>
FieldSinCos<T>FastMath. sinCos(T x)
Combined Sine and Cosine function.static <T extends RealFieldElement<T>>
TFastMath. sinh(T x)
Compute the hyperbolic sine of a number.static <T extends RealFieldElement<T>>
TFastMath. sqrt(T a)
Compute the square root of a number.static <T extends RealFieldElement<T>>
TFastMath. tan(T x)
Tangent function.static <T extends RealFieldElement<T>>
TFastMath. tanh(T x)
Compute the hyperbolic tangent of a number.Methods in org.hipparchus.util that return RealFieldElement Modifier and Type Method Description T[]
FieldTuple. getComponents()
Get all components of the tuple.Constructors in org.hipparchus.util with parameters of type RealFieldElement Constructor Description FieldTuple(T... x)
Creates a new instance from its components.
-