Uses of Interface
org.hipparchus.RealFieldElement
- 
Packages that use RealFieldElement Package Description org.hipparchus.analysis Parent package for common numerical analysis procedures, including root finding, function interpolation and integration.org.hipparchus.analysis.differentiation This package holds the main interfaces and basic building block classes dealing with differentiation.org.hipparchus.analysis.polynomials Univariate real polynomials implementations, seen as differentiable univariate real functions.org.hipparchus.analysis.solvers Root finding algorithms, for univariate real functions.org.hipparchus.dfp Decimal floating point library for Javaorg.hipparchus.geometry.euclidean.threed This package provides basic 3D geometry components.org.hipparchus.linear Linear algebra support.org.hipparchus.ode This package provides classes to solve Ordinary Differential Equations problems.org.hipparchus.ode.events Eventsorg.hipparchus.ode.nonstiff This package provides classes to solve non-stiff Ordinary Differential Equations problems.org.hipparchus.ode.sampling This package provides classes to handle sampling steps during Ordinary Differential Equations integration.org.hipparchus.util Convenience routines and common data structures used throughout the Hipparchus library. - 
- 
Uses of RealFieldElement in org.hipparchus.analysis
Classes in org.hipparchus.analysis with type parameters of type RealFieldElement Modifier and Type Interface Description interfaceRealFieldUnivariateFunction<T extends RealFieldElement<T>>An interface representing a univariate real function.interfaceRealFieldUnivariateMatrixFunction<T extends RealFieldElement<T>>An interface representing a univariate matrix function.interfaceRealFieldUnivariateVectorFunction<T extends RealFieldElement<T>>An interface representing a univariate vectorial function for any field type.Methods in org.hipparchus.analysis with type parameters of type RealFieldElement Modifier and Type Method Description default <T extends RealFieldElement<T>>
RealFieldUnivariateFunction<T>FieldUnivariateFunction. toRealFieldUnivariateFunction(Field<T> field)Convert to aRealFieldUnivariateFunctionwith a specific type.default <T extends RealFieldElement<T>>
RealFieldUnivariateMatrixFunction<T>FieldUnivariateMatrixFunction. toRealFieldUnivariateMatrixFunction(Field<T> field)Convert to aRealFieldUnivariateMatrixFunctionwith a specific type.default <T extends RealFieldElement<T>>
RealFieldUnivariateVectorFunction<T>FieldUnivariateVectorFunction. toRealFieldUnivariateVectorFunction(Field<T> field)Convert to aRealFieldUnivariateVectorFunctionwith a specific type.<T extends RealFieldElement<T>>
TFieldUnivariateFunction. value(T x)Compute the value of the function.<T extends RealFieldElement<T>>
T[][]FieldUnivariateMatrixFunction. value(T x)Compute the value for the function.<T extends RealFieldElement<T>>
T[]FieldUnivariateVectorFunction. value(T x)Compute the value for the function.Methods in org.hipparchus.analysis that return RealFieldElement Modifier and Type Method Description <T extends RealFieldElement<T>>
T[][]FieldUnivariateMatrixFunction. value(T x)Compute the value for the function.<T extends RealFieldElement<T>>
T[]FieldUnivariateVectorFunction. value(T x)Compute the value for the function.T[][]RealFieldUnivariateMatrixFunction. value(T x)Compute the value for the function.T[]RealFieldUnivariateVectorFunction. value(T x)Compute the value for the function. - 
Uses of RealFieldElement in org.hipparchus.analysis.differentiation
Classes in org.hipparchus.analysis.differentiation with type parameters of type RealFieldElement Modifier and Type Class Description classFDSFactory<T extends RealFieldElement<T>>Factory forFieldDerivativeStructure.classFieldDerivativeStructure<T extends RealFieldElement<T>>Class representing both the value and the differentials of a function.Classes in org.hipparchus.analysis.differentiation that implement RealFieldElement Modifier and Type Class Description classDerivativeStructureClass representing both the value and the differentials of a function.classFieldDerivativeStructure<T extends RealFieldElement<T>>Class representing both the value and the differentials of a function.classSparseGradientFirst derivative computation with large number of variables.Methods in org.hipparchus.analysis.differentiation with type parameters of type RealFieldElement Modifier and Type Method Description <T extends RealFieldElement<T>>
voidDSCompiler. acos(T[] operand, int operandOffset, T[] result, int resultOffset)Compute arc cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. acosh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute inverse hyperbolic cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. add(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform addition of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. asin(T[] operand, int operandOffset, T[] result, int resultOffset)Compute arc sine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. asinh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute inverse hyperbolic sine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. atan(T[] operand, int operandOffset, T[] result, int resultOffset)Compute arc tangent of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. atan2(T[] y, int yOffset, T[] x, int xOffset, T[] result, int resultOffset)Compute two arguments arc tangent of a derivative structure.static <T extends RealFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure. atan2(FieldDerivativeStructure<T> y, FieldDerivativeStructure<T> x)Two arguments arc tangent operation.<T extends RealFieldElement<T>>
voidDSCompiler. atanh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute inverse hyperbolic tangent of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. compose(T[] operand, int operandOffset, double[] f, T[] result, int resultOffset)Compute composition of a derivative structure by a function.<T extends RealFieldElement<T>>
voidDSCompiler. compose(T[] operand, int operandOffset, T[] f, T[] result, int resultOffset)Compute composition of a derivative structure by a function.<T extends RealFieldElement<T>>
voidDSCompiler. cos(T[] operand, int operandOffset, T[] result, int resultOffset)Compute cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. cosh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute hyperbolic cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. divide(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform division of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. exp(T[] operand, int operandOffset, T[] result, int resultOffset)Compute exponential of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. expm1(T[] operand, int operandOffset, T[] result, int resultOffset)Compute exp(x) - 1 of a derivative structure.static <T extends RealFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure. hypot(FieldDerivativeStructure<T> x, FieldDerivativeStructure<T> y)Returns the hypotenuse of a triangle with sidesxandy- sqrt(x2 +y2) avoiding intermediate overflow or underflow.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, double a4, T[] c4, int offset4, T[] result, int resultOffset)Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, T[] result, int resultOffset)Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, T[] result, int resultOffset)Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T[] result, int resultOffset)Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T[] result, int resultOffset)Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T a4, T[] c4, int offset4, T[] result, int resultOffset)Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. log(T[] operand, int operandOffset, T[] result, int resultOffset)Compute natural logarithm of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. log10(T[] operand, int operandOffset, T[] result, int resultOffset)Computes base 10 logarithm of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. log1p(T[] operand, int operandOffset, T[] result, int resultOffset)Computes shifted logarithm of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. multiply(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform multiplication of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. pow(double a, T[] operand, int operandOffset, T[] result, int resultOffset)Compute power of a double to a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. pow(T[] operand, int operandOffset, double p, T[] result, int resultOffset)Compute power of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. pow(T[] operand, int operandOffset, int n, T[] result, int resultOffset)Compute integer power of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. pow(T[] x, int xOffset, T[] y, int yOffset, T[] result, int resultOffset)Compute power of a derivative structure.static <T extends RealFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure. pow(double a, FieldDerivativeStructure<T> x)Compute ax where a is a double and x aFieldDerivativeStructure<T extends RealFieldElement<T>>
voidDSCompiler. remainder(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform remainder of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. rootN(T[] operand, int operandOffset, int n, T[] result, int resultOffset)Compute nth root of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. sin(T[] operand, int operandOffset, T[] result, int resultOffset)Compute sine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. sinCos(T[] operand, int operandOffset, T[] sin, int sinOffset, T[] cos, int cosOffset)Compute combined sine and cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. sinh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute hyperbolic sine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. subtract(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform subtraction of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. tan(T[] operand, int operandOffset, T[] result, int resultOffset)Compute tangent of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. tanh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute hyperbolic tangent of a derivative structure.<T extends RealFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, double... delta)Evaluate Taylor expansion of a derivative structure.<T extends RealFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, T... delta)Evaluate Taylor expansion of a derivative structure.Methods in org.hipparchus.analysis.differentiation that return RealFieldElement Modifier and Type Method Description T[]FieldDerivativeStructure. getAllDerivatives()Get all partial derivatives.Methods in org.hipparchus.analysis.differentiation with parameters of type RealFieldElement Modifier and Type Method Description <T extends RealFieldElement<T>>
voidDSCompiler. acos(T[] operand, int operandOffset, T[] result, int resultOffset)Compute arc cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. acosh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute inverse hyperbolic cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. add(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform addition of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. asin(T[] operand, int operandOffset, T[] result, int resultOffset)Compute arc sine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. asinh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute inverse hyperbolic sine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. atan(T[] operand, int operandOffset, T[] result, int resultOffset)Compute arc tangent of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. atan2(T[] y, int yOffset, T[] x, int xOffset, T[] result, int resultOffset)Compute two arguments arc tangent of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. atanh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute inverse hyperbolic tangent of a derivative structure.FieldDerivativeStructure<T>FDSFactory. build(T... derivatives)Build aFieldDerivativeStructurefrom all its derivatives.<T extends RealFieldElement<T>>
voidDSCompiler. compose(T[] operand, int operandOffset, double[] f, T[] result, int resultOffset)Compute composition of a derivative structure by a function.<T extends RealFieldElement<T>>
voidDSCompiler. compose(T[] operand, int operandOffset, T[] f, T[] result, int resultOffset)Compute composition of a derivative structure by a function.FieldDerivativeStructure<T>FieldDerivativeStructure. compose(T... f)Compute composition of the instance by a univariate function.<T extends RealFieldElement<T>>
voidDSCompiler. cos(T[] operand, int operandOffset, T[] result, int resultOffset)Compute cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. cosh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute hyperbolic cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. divide(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform division of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. exp(T[] operand, int operandOffset, T[] result, int resultOffset)Compute exponential of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. expm1(T[] operand, int operandOffset, T[] result, int resultOffset)Compute exp(x) - 1 of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, double a4, T[] c4, int offset4, T[] result, int resultOffset)Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, double a3, T[] c3, int offset3, T[] result, int resultOffset)Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(double a1, T[] c1, int offset1, double a2, T[] c2, int offset2, T[] result, int resultOffset)Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T[] result, int resultOffset)Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T[] result, int resultOffset)Compute linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. linearCombination(T a1, T[] c1, int offset1, T a2, T[] c2, int offset2, T a3, T[] c3, int offset3, T a4, T[] c4, int offset4, T[] result, int resultOffset)Compute linear combination.FieldDerivativeStructure<T>FieldDerivativeStructure. linearCombination(T[] a, FieldDerivativeStructure<T>[] b)Compute a linear combination.<T extends RealFieldElement<T>>
voidDSCompiler. log(T[] operand, int operandOffset, T[] result, int resultOffset)Compute natural logarithm of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. log10(T[] operand, int operandOffset, T[] result, int resultOffset)Computes base 10 logarithm of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. log1p(T[] operand, int operandOffset, T[] result, int resultOffset)Computes shifted logarithm of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. multiply(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform multiplication of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. pow(double a, T[] operand, int operandOffset, T[] result, int resultOffset)Compute power of a double to a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. pow(T[] operand, int operandOffset, double p, T[] result, int resultOffset)Compute power of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. pow(T[] operand, int operandOffset, int n, T[] result, int resultOffset)Compute integer power of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. pow(T[] x, int xOffset, T[] y, int yOffset, T[] result, int resultOffset)Compute power of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. remainder(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform remainder of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. rootN(T[] operand, int operandOffset, int n, T[] result, int resultOffset)Compute nth root of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. sin(T[] operand, int operandOffset, T[] result, int resultOffset)Compute sine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. sinCos(T[] operand, int operandOffset, T[] sin, int sinOffset, T[] cos, int cosOffset)Compute combined sine and cosine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. sinh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute hyperbolic sine of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. subtract(T[] lhs, int lhsOffset, T[] rhs, int rhsOffset, T[] result, int resultOffset)Perform subtraction of two derivative structures.<T extends RealFieldElement<T>>
voidDSCompiler. tan(T[] operand, int operandOffset, T[] result, int resultOffset)Compute tangent of a derivative structure.<T extends RealFieldElement<T>>
voidDSCompiler. tanh(T[] operand, int operandOffset, T[] result, int resultOffset)Compute hyperbolic tangent of a derivative structure.<T extends RealFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, double... delta)Evaluate Taylor expansion of a derivative structure.<T extends RealFieldElement<T>>
TDSCompiler. taylor(T[] ds, int dsOffset, T... delta)Evaluate Taylor expansion of a derivative structure.TFieldDerivativeStructure. taylor(T... delta)Evaluate Taylor expansion of a derivative structure. - 
Uses of RealFieldElement in org.hipparchus.analysis.polynomials
Methods in org.hipparchus.analysis.polynomials with type parameters of type RealFieldElement Modifier and Type Method Description <T extends RealFieldElement<T>>
TPolynomialFunction. value(T t)Compute the value of the function.<T extends RealFieldElement<T>>
TPolynomialFunctionNewtonForm. value(T t)Compute the value of the function.<T extends RealFieldElement<T>>
TPolynomialSplineFunction. value(T t)Compute the value of the function. - 
Uses of RealFieldElement in org.hipparchus.analysis.solvers
Classes in org.hipparchus.analysis.solvers with type parameters of type RealFieldElement Modifier and Type Interface Description interfaceBracketedRealFieldUnivariateSolver<T extends RealFieldElement<T>>Interface for(univariate real) root-finding algorithmsthat maintain a bracketed solution.static classBracketedRealFieldUnivariateSolver.Interval<T extends RealFieldElement<T>>An interval of a function that brackets a root.classFieldBracketingNthOrderBrentSolver<T extends RealFieldElement<T>>This class implements a modification of the Brent algorithm.Methods in org.hipparchus.analysis.solvers with type parameters of type RealFieldElement Modifier and Type Method Description static <T extends RealFieldElement<T>>
T[]UnivariateSolverUtils. bracket(RealFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound)This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0 andmaximumIterationsset toInteger.MAX_VALUE.static <T extends RealFieldElement<T>>
T[]UnivariateSolverUtils. bracket(RealFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, int maximumIterations)This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0.static <T extends RealFieldElement<T>>
T[]UnivariateSolverUtils. bracket(RealFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, T q, T r, int maximumIterations)This method attempts to find two values a and b satisfyinglowerBound <= a < initial < b <= upperBoundf(a) * f(b) <= 0Iffis continuous on[a,b], this means thataandbbracket a root off.Methods in org.hipparchus.analysis.solvers that return RealFieldElement Modifier and Type Method Description static <T extends RealFieldElement<T>>
T[]UnivariateSolverUtils. bracket(RealFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound)This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0 andmaximumIterationsset toInteger.MAX_VALUE.static <T extends RealFieldElement<T>>
T[]UnivariateSolverUtils. bracket(RealFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, int maximumIterations)This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0.static <T extends RealFieldElement<T>>
T[]UnivariateSolverUtils. bracket(RealFieldUnivariateFunction<T> function, T initial, T lowerBound, T upperBound, T q, T r, int maximumIterations)This method attempts to find two values a and b satisfyinglowerBound <= a < initial < b <= upperBoundf(a) * f(b) <= 0Iffis continuous on[a,b], this means thataandbbracket a root off. - 
Uses of RealFieldElement in org.hipparchus.dfp
Classes in org.hipparchus.dfp that implement RealFieldElement Modifier and Type Class Description classDfpDecimal floating point library for JavaclassDfpDecSubclass ofDfpwhich hides the radix-10000 artifacts of the superclass. - 
Uses of RealFieldElement in org.hipparchus.geometry.euclidean.threed
Classes in org.hipparchus.geometry.euclidean.threed with type parameters of type RealFieldElement Modifier and Type Class Description classFieldLine<T extends RealFieldElement<T>>The class represent lines in a three dimensional space.classFieldRotation<T extends RealFieldElement<T>>This class is a re-implementation ofRotationusingRealFieldElement.classFieldVector3D<T extends RealFieldElement<T>>This class is a re-implementation ofVector3DusingRealFieldElement.Methods in org.hipparchus.geometry.euclidean.threed with type parameters of type RealFieldElement Modifier and Type Method Description static <T extends RealFieldElement<T>>
TFieldVector3D. angle(FieldVector3D<T> v1, FieldVector3D<T> v2)Compute the angular separation between two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D. angle(FieldVector3D<T> v1, Vector3D v2)Compute the angular separation between two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D. angle(Vector3D v1, FieldVector3D<T> v2)Compute the angular separation between two vectors.static <T extends RealFieldElement<T>>
FieldRotation<T>FieldRotation. applyInverseTo(Rotation rOuter, FieldRotation<T> rInner)Apply the inverse of a rotation to another rotation.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldRotation. applyInverseTo(Rotation r, FieldVector3D<T> u)Apply the inverse of a rotation to a vector.static <T extends RealFieldElement<T>>
FieldRotation<T>FieldRotation. applyTo(Rotation r1, FieldRotation<T> rInner)Apply a rotation to another rotation.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldRotation. applyTo(Rotation r, FieldVector3D<T> u)Apply a rotation to a vector.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. crossProduct(FieldVector3D<T> v1, FieldVector3D<T> v2)Compute the cross-product of two vectors.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. crossProduct(FieldVector3D<T> v1, Vector3D v2)Compute the cross-product of two vectors.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. crossProduct(Vector3D v1, FieldVector3D<T> v2)Compute the cross-product of two vectors.static <T extends RealFieldElement<T>>
TFieldRotation. distance(FieldRotation<T> r1, FieldRotation<T> r2)Compute the distance between two rotations.static <T extends RealFieldElement<T>>
TFieldVector3D. distance(FieldVector3D<T> v1, FieldVector3D<T> v2)Compute the distance between two vectors according to the L2 norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distance(FieldVector3D<T> v1, Vector3D v2)Compute the distance between two vectors according to the L2 norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distance(Vector3D v1, FieldVector3D<T> v2)Compute the distance between two vectors according to the L2 norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distance1(FieldVector3D<T> v1, FieldVector3D<T> v2)Compute the distance between two vectors according to the L1 norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distance1(FieldVector3D<T> v1, Vector3D v2)Compute the distance between two vectors according to the L1 norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distance1(Vector3D v1, FieldVector3D<T> v2)Compute the distance between two vectors according to the L1 norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distanceInf(FieldVector3D<T> v1, FieldVector3D<T> v2)Compute the distance between two vectors according to the L∞ norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distanceInf(FieldVector3D<T> v1, Vector3D v2)Compute the distance between two vectors according to the L∞ norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distanceInf(Vector3D v1, FieldVector3D<T> v2)Compute the distance between two vectors according to the L∞ norm.static <T extends RealFieldElement<T>>
TFieldVector3D. distanceSq(FieldVector3D<T> v1, FieldVector3D<T> v2)Compute the square of the distance between two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D. distanceSq(FieldVector3D<T> v1, Vector3D v2)Compute the square of the distance between two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D. distanceSq(Vector3D v1, FieldVector3D<T> v2)Compute the square of the distance between two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D. dotProduct(FieldVector3D<T> v1, FieldVector3D<T> v2)Compute the dot-product of two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D. dotProduct(FieldVector3D<T> v1, Vector3D v2)Compute the dot-product of two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D. dotProduct(Vector3D v1, FieldVector3D<T> v2)Compute the dot-product of two vectors.static <T extends RealFieldElement<T>>
FieldRotation<T>FieldRotation. getIdentity(Field<T> field)Get identity rotation.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getMinusI(Field<T> field)Get opposite of the first canonical vector (coordinates: -1, 0, 0).static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getMinusJ(Field<T> field)Get opposite of the second canonical vector (coordinates: 0, -1, 0).static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getMinusK(Field<T> field)Get opposite of the third canonical vector (coordinates: 0, 0, -1).static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getNaN(Field<T> field)Get a vector with all coordinates set to NaN.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getNegativeInfinity(Field<T> field)Get a vector with all coordinates set to negative infinity.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getPlusI(Field<T> field)Get first canonical vector (coordinates: 1, 0, 0).static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getPlusJ(Field<T> field)Get second canonical vector (coordinates: 0, 1, 0).static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getPlusK(Field<T> field)Get third canonical vector (coordinates: 0, 0, 1).static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getPositiveInfinity(Field<T> field)Get a vector with all coordinates set to positive infinity.static <T extends RealFieldElement<T>>
FieldVector3D<T>FieldVector3D. getZero(Field<T> field)Get null vector (coordinates: 0, 0, 0).Methods in org.hipparchus.geometry.euclidean.threed that return RealFieldElement Modifier and Type Method Description T[]FieldRotation. getAngles(RotationOrder order)Deprecated.as of 3.6, replaced withFieldRotation.getAngles(RotationOrder, RotationConvention)T[]FieldRotation. getAngles(RotationOrder order, RotationConvention convention)Get the Cardan or Euler angles corresponding to the instance.T[][]FieldRotation. getMatrix()Get the 3X3 matrix corresponding to the instanceT[]FieldVector3D. toArray()Get the vector coordinates as a dimension 3 array.Methods in org.hipparchus.geometry.euclidean.threed with parameters of type RealFieldElement Modifier and Type Method Description voidFieldRotation. applyInverseTo(double[] in, T[] out)Apply the inverse of the rotation to a vector stored in an array.voidFieldRotation. applyInverseTo(T[] in, T[] out)Apply the inverse of the rotation to a vector stored in an array.voidFieldRotation. applyTo(double[] in, T[] out)Apply the rotation to a vector stored in an array.voidFieldRotation. applyTo(T[] in, T[] out)Apply the rotation to a vector stored in an array.Constructors in org.hipparchus.geometry.euclidean.threed with parameters of type RealFieldElement Constructor Description FieldRotation(T[][] m, double threshold)Build a rotation from a 3X3 matrix.FieldVector3D(T[] v)Simple constructor. - 
Uses of RealFieldElement in org.hipparchus.linear
Classes in org.hipparchus.linear with type parameters of type RealFieldElement Modifier and Type Class Description classFieldQRDecomposition<T extends RealFieldElement<T>>Calculates the QR-decomposition of a field matrix.Methods in org.hipparchus.linear with parameters of type RealFieldElement Modifier and Type Method Description protected voidFieldQRDecomposition. decompose(T[][] matrix)Decompose matrix.protected voidFieldQRDecomposition. performHouseholderReflection(int minor, T[][] matrix)Perform Householder reflection for a minor A(minor, minor) of A. - 
Uses of RealFieldElement in org.hipparchus.ode
Classes in org.hipparchus.ode with type parameters of type RealFieldElement Modifier and Type Class Description classAbstractFieldIntegrator<T extends RealFieldElement<T>>Base class managing common boilerplate for all integrators.classFieldDenseOutputModel<T extends RealFieldElement<T>>This class stores all information provided by an ODE integrator during the integration process and build a continuous model of the solution from this.classFieldEquationsMapper<T extends RealFieldElement<T>>Class mapping the part of a complete state or derivative that pertains to a set of differential equations.classFieldExpandableODE<T extends RealFieldElement<T>>This class represents a combined set of first order differential equations, with at least a primary set of equations expandable by some sets of secondary equations.interfaceFieldODEIntegrator<T extends RealFieldElement<T>>This interface represents a first order integrator for differential equations.classFieldODEState<T extends RealFieldElement<T>>Container for time, main and secondary state vectors.classFieldODEStateAndDerivative<T extends RealFieldElement<T>>Container for time, main and secondary state vectors as well as their derivatives.interfaceFieldOrdinaryDifferentialEquation<T extends RealFieldElement<T>>This interface represents a first order differential equations set.interfaceFieldSecondaryODE<T extends RealFieldElement<T>>This interface allows users to add secondary differential equations to a primary set of differential equations.classMultistepFieldIntegrator<T extends RealFieldElement<T>>This class is the base class for multistep integrators for Ordinary Differential Equations.Fields in org.hipparchus.ode declared as RealFieldElement Modifier and Type Field Description protected T[]MultistepFieldIntegrator. scaledFirst scaled derivative (h y').Methods in org.hipparchus.ode that return RealFieldElement Modifier and Type Method Description T[]AbstractFieldIntegrator. computeDerivatives(T t, T[] y)Compute the derivatives and check the number of evaluations.T[]FieldExpandableODE. computeDerivatives(T t, T[] y)Get the current time derivative of the complete state vector.T[]FieldOrdinaryDifferentialEquation. computeDerivatives(T t, T[] y)Get the current time derivative of the state vector.T[]FieldSecondaryODE. computeDerivatives(T t, T[] primary, T[] primaryDot, T[] secondary)Compute the derivatives related to the secondary state parameters.protected T[][]FieldODEState. copy(T[][] original)Copy a two-dimensions array.T[]FieldEquationsMapper. extractEquationData(int index, T[] complete)Extract equation data from a complete state or derivative array.T[]FieldODEStateAndDerivative. getCompleteDerivative()Get complete derivative at time.T[]FieldODEState. getCompleteState()Get complete state at time.T[]FieldODEStateAndDerivative. getPrimaryDerivative()Get derivative of the primary state at time.T[]FieldODEState. getPrimaryState()Get primary state at time.T[]FieldODEStateAndDerivative. getSecondaryDerivative(int index)Get derivative of the secondary state at time.T[]FieldODEState. getSecondaryState(int index)Get secondary state at time.T[]FieldODEState. getState()Deprecated.as of 1.0, replaced withFieldODEState.getPrimaryState()T[]FieldEquationsMapper. mapDerivative(FieldODEStateAndDerivative<T> state)Deprecated.as of 1.0, replaced withFieldODEStateAndDerivative.getCompleteDerivative()T[]FieldEquationsMapper. mapState(FieldODEState<T> state)Deprecated.as of 1.0, replaced withFieldODEState.getCompleteState()Methods in org.hipparchus.ode with parameters of type RealFieldElement Modifier and Type Method Description T[]AbstractFieldIntegrator. computeDerivatives(T t, T[] y)Compute the derivatives and check the number of evaluations.T[]FieldExpandableODE. computeDerivatives(T t, T[] y)Get the current time derivative of the complete state vector.T[]FieldOrdinaryDifferentialEquation. computeDerivatives(T t, T[] y)Get the current time derivative of the state vector.T[]FieldSecondaryODE. computeDerivatives(T t, T[] primary, T[] primaryDot, T[] secondary)Compute the derivatives related to the secondary state parameters.protected T[][]FieldODEState. copy(T[][] original)Copy a two-dimensions array.T[]FieldEquationsMapper. extractEquationData(int index, T[] complete)Extract equation data from a complete state or derivative array.default voidFieldOrdinaryDifferentialEquation. init(T t0, T[] y0, T finalTime)Initialize equations at the start of an ODE integration.default voidFieldSecondaryODE. init(T t0, T[] primary0, T[] secondary0, T finalTime)Initialize equations at the start of an ODE integration.protected abstract Array2DRowFieldMatrix<T>MultistepFieldIntegrator. initializeHighOrderDerivatives(T h, T[] t, T[][] y, T[][] yDot)Initialize the high order scaled derivatives at step start.voidFieldEquationsMapper. insertEquationData(int index, T[] equationData, T[] complete)Insert equation data into a complete state or derivative array.FieldODEStateAndDerivative<T>FieldEquationsMapper. mapStateAndDerivative(T t, T[] y, T[] yDot)Map flat arrays to a state and derivative.Constructors in org.hipparchus.ode with parameters of type RealFieldElement Constructor Description FieldODEState(T time, T[] primaryState)Simple constructor.FieldODEState(T time, T[] primaryState, T[][] secondaryState)Simple constructor.FieldODEStateAndDerivative(T time, T[] primaryState, T[] primaryDerivative)Simple constructor.FieldODEStateAndDerivative(T time, T[] primaryState, T[] primaryDerivative, T[][] secondaryState, T[][] secondaryDerivative)Simple constructor. - 
Uses of RealFieldElement in org.hipparchus.ode.events
Classes in org.hipparchus.ode.events with type parameters of type RealFieldElement Modifier and Type Class Description classFieldEventState<T extends RealFieldElement<T>>This class handles the state for oneevent handlerduring integration steps.static classFieldEventState.EventOccurrence<T extends RealFieldElement<T>>Class to hold the data related to an event occurrence that is needed to decide how to modify integration.interfaceFieldODEEventHandler<T extends RealFieldElement<T>>This interface represents a handler for discrete events triggered during ODE integration. - 
Uses of RealFieldElement in org.hipparchus.ode.nonstiff
Classes in org.hipparchus.ode.nonstiff with type parameters of type RealFieldElement Modifier and Type Class Description classAdamsBashforthFieldIntegrator<T extends RealFieldElement<T>>This class implements explicit Adams-Bashforth integrators for Ordinary Differential Equations.classAdamsFieldIntegrator<T extends RealFieldElement<T>>Base class forAdams-BashforthandAdams-Moultonintegrators.classAdamsMoultonFieldIntegrator<T extends RealFieldElement<T>>This class implements implicit Adams-Moulton integrators for Ordinary Differential Equations.classAdamsNordsieckFieldTransformer<T extends RealFieldElement<T>>Transformer to Nordsieck vectors for Adams integrators.classAdaptiveStepsizeFieldIntegrator<T extends RealFieldElement<T>>This abstract class holds the common part of all adaptive stepsize integrators for Ordinary Differential Equations.classClassicalRungeKuttaFieldIntegrator<T extends RealFieldElement<T>>This class implements the classical fourth order Runge-Kutta integrator for Ordinary Differential Equations (it is the most often used Runge-Kutta method).classDormandPrince54FieldIntegrator<T extends RealFieldElement<T>>This class implements the 5(4) Dormand-Prince integrator for Ordinary Differential Equations.classDormandPrince853FieldIntegrator<T extends RealFieldElement<T>>This class implements the 8(5,3) Dormand-Prince integrator for Ordinary Differential Equations.classEmbeddedRungeKuttaFieldIntegrator<T extends RealFieldElement<T>>This class implements the common part of all embedded Runge-Kutta integrators for Ordinary Differential Equations.classEulerFieldIntegrator<T extends RealFieldElement<T>>This class implements a simple Euler integrator for Ordinary Differential Equations.interfaceFieldButcherArrayProvider<T extends RealFieldElement<T>>This interface represents an integrator based on Butcher arrays.classGillFieldIntegrator<T extends RealFieldElement<T>>This class implements the Gill fourth order Runge-Kutta integrator for Ordinary Differential Equations .classHighamHall54FieldIntegrator<T extends RealFieldElement<T>>This class implements the 5(4) Higham and Hall integrator for Ordinary Differential Equations.classLutherFieldIntegrator<T extends RealFieldElement<T>>This class implements the Luther sixth order Runge-Kutta integrator for Ordinary Differential Equations.classMidpointFieldIntegrator<T extends RealFieldElement<T>>This class implements a second order Runge-Kutta integrator for Ordinary Differential Equations.classRungeKuttaFieldIntegrator<T extends RealFieldElement<T>>This class implements the common part of all fixed step Runge-Kutta integrators for Ordinary Differential Equations.classThreeEighthesFieldIntegrator<T extends RealFieldElement<T>>This class implements the 3/8 fourth order Runge-Kutta integrator for Ordinary Differential Equations.Methods in org.hipparchus.ode.nonstiff with type parameters of type RealFieldElement Modifier and Type Method Description static <T extends RealFieldElement<T>>
AdamsNordsieckFieldTransformer<T>AdamsNordsieckFieldTransformer. getInstance(Field<T> field, int nSteps)Get the Nordsieck transformer for a given field and number of steps.Methods in org.hipparchus.ode.nonstiff that return RealFieldElement Modifier and Type Method Description T[][]ClassicalRungeKuttaFieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[][]DormandPrince54FieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[][]DormandPrince853FieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[][]EulerFieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[][]FieldButcherArrayProvider. getA()Get the internal weights from Butcher array (without the first empty row).T[][]GillFieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[][]HighamHall54FieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[][]LutherFieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[][]MidpointFieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[][]ThreeEighthesFieldIntegrator. getA()Get the internal weights from Butcher array (without the first empty row).T[]ClassicalRungeKuttaFieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]DormandPrince54FieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]DormandPrince853FieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]EulerFieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]FieldButcherArrayProvider. getB()Get the external weights for the high order method from Butcher array.T[]GillFieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]HighamHall54FieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]LutherFieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]MidpointFieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]ThreeEighthesFieldIntegrator. getB()Get the external weights for the high order method from Butcher array.T[]ClassicalRungeKuttaFieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]DormandPrince54FieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]DormandPrince853FieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]EulerFieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]FieldButcherArrayProvider. getC()Get the time steps from Butcher array (without the first zero).T[]GillFieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]HighamHall54FieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]LutherFieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]MidpointFieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]ThreeEighthesFieldIntegrator. getC()Get the time steps from Butcher array (without the first zero).T[]RungeKuttaFieldIntegrator. singleStep(FieldOrdinaryDifferentialEquation<T> equations, T t0, T[] y0, T t)Fast computation of a single step of ODE integration.Methods in org.hipparchus.ode.nonstiff with parameters of type RealFieldElement Modifier and Type Method Description protected org.hipparchus.ode.nonstiff.ClassicalRungeKuttaFieldStateInterpolator<T>ClassicalRungeKuttaFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected org.hipparchus.ode.nonstiff.DormandPrince54FieldStateInterpolator<T>DormandPrince54FieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected org.hipparchus.ode.nonstiff.DormandPrince853FieldStateInterpolator<T>DormandPrince853FieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected abstract org.hipparchus.ode.nonstiff.RungeKuttaFieldStateInterpolator<T>EmbeddedRungeKuttaFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected org.hipparchus.ode.nonstiff.EulerFieldStateInterpolator<T>EulerFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected org.hipparchus.ode.nonstiff.GillFieldStateInterpolator<T>GillFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected org.hipparchus.ode.nonstiff.HighamHall54FieldStateInterpolator<T>HighamHall54FieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected org.hipparchus.ode.nonstiff.LutherFieldStateInterpolator<T>LutherFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected org.hipparchus.ode.nonstiff.MidpointFieldStateInterpolator<T>MidpointFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected abstract org.hipparchus.ode.nonstiff.RungeKuttaFieldStateInterpolator<T>RungeKuttaFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected org.hipparchus.ode.nonstiff.ThreeEighthesFieldStateInterpolator<T>ThreeEighthesFieldIntegrator. createInterpolator(boolean forward, T[][] yDotK, FieldODEStateAndDerivative<T> globalPreviousState, FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper)Create an interpolator.protected TDormandPrince54FieldIntegrator. estimateError(T[][] yDotK, T[] y0, T[] y1, T h)Compute the error ratio.protected TDormandPrince853FieldIntegrator. estimateError(T[][] yDotK, T[] y0, T[] y1, T h)Compute the error ratio.protected abstract TEmbeddedRungeKuttaFieldIntegrator. estimateError(T[][] yDotK, T[] y0, T[] y1, T h)Compute the error ratio.protected THighamHall54FieldIntegrator. estimateError(T[][] yDotK, T[] y0, T[] y1, T h)Compute the error ratio.protected Array2DRowFieldMatrix<T>AdamsFieldIntegrator. initializeHighOrderDerivatives(T h, T[] t, T[][] y, T[][] yDot)Initialize the high order scaled derivatives at step start.Array2DRowFieldMatrix<T>AdamsNordsieckFieldTransformer. initializeHighOrderDerivatives(T h, T[] t, T[][] y, T[][] yDot)Initialize the high order scaled derivatives at step start.TAdaptiveStepsizeFieldIntegrator. initializeStep(boolean forward, int order, T[] scale, FieldODEStateAndDerivative<T> state0, FieldEquationsMapper<T> mapper)Initialize the integration step.T[]RungeKuttaFieldIntegrator. singleStep(FieldOrdinaryDifferentialEquation<T> equations, T t0, T[] y0, T t)Fast computation of a single step of ODE integration.voidAdamsFieldIntegrator. updateHighOrderDerivativesPhase2(T[] start, T[] end, Array2DRowFieldMatrix<T> highOrder)Update the high order scaled derivatives Adams integrators (phase 2).voidAdamsNordsieckFieldTransformer. updateHighOrderDerivativesPhase2(T[] start, T[] end, Array2DRowFieldMatrix<T> highOrder)Update the high order scaled derivatives Adams integrators (phase 2). - 
Uses of RealFieldElement in org.hipparchus.ode.sampling
Classes in org.hipparchus.ode.sampling with type parameters of type RealFieldElement Modifier and Type Class Description classAbstractFieldODEStateInterpolator<T extends RealFieldElement<T>>This abstract class represents an interpolator over the last step during an ODE integration.interfaceFieldODEFixedStepHandler<T extends RealFieldElement<T>>This interface represents a handler that should be called after each successful fixed step.interfaceFieldODEStateInterpolator<T extends RealFieldElement<T>>This interface represents an interpolator over the last step during an ODE integration.interfaceFieldODEStepHandler<T extends RealFieldElement<T>>This interface represents a handler that should be called after each successful step.classFieldStepNormalizer<T extends RealFieldElement<T>>This class wraps an object implementingFieldODEFixedStepHandlerinto aFieldODEStepHandler. - 
Uses of RealFieldElement in org.hipparchus.util
Classes in org.hipparchus.util with type parameters of type RealFieldElement Modifier and Type Class Description classFieldTuple<T extends RealFieldElement<T>>This class allows to perform the same computation of all components of a Tuple at once.Classes in org.hipparchus.util that implement RealFieldElement Modifier and Type Class Description classDecimal64This class wraps adoublevalue in an object.classFieldTuple<T extends RealFieldElement<T>>This class allows to perform the same computation of all components of a Tuple at once.classTupleThis class allows to perform the same computation of all components of a Tuple at once.Methods in org.hipparchus.util with type parameters of type RealFieldElement Modifier and Type Method Description static <T extends RealFieldElement<T>>
TFastMath. abs(T x)Absolute value.static <T extends RealFieldElement<T>>
TFastMath. acos(T x)Compute the arc cosine of a number.static <T extends RealFieldElement<T>>
TFastMath. acosh(T a)Compute the inverse hyperbolic cosine of a number.static <T extends RealFieldElement<T>>
TFastMath. asin(T x)Compute the arc sine of a number.static <T extends RealFieldElement<T>>
TFastMath. asinh(T a)Compute the inverse hyperbolic sine of a number.static <T extends RealFieldElement<T>>
TFastMath. atan(T x)Arctangent functionstatic <T extends RealFieldElement<T>>
TFastMath. atan2(T y, T x)Two arguments arctangent functionstatic <T extends RealFieldElement<T>>
TFastMath. atanh(T a)Compute the inverse hyperbolic tangent of a number.static <T extends RealFieldElement<T>>
TFastMath. cbrt(T x)Compute the cubic root of a number.static <T extends RealFieldElement<T>>
TFastMath. ceil(T x)Get the smallest whole number larger than x.static <T extends RealFieldElement<T>>
TFastMath. copySign(T magnitude, double sign)Returns the first argument with the sign of the second argument.static <T extends RealFieldElement<T>>
TFastMath. copySign(T magnitude, T sign)Returns the first argument with the sign of the second argument.static <T extends RealFieldElement<T>>
TFastMath. cos(T x)Cosine function.static <T extends RealFieldElement<T>>
TFastMath. cosh(T x)Compute the hyperbolic cosine of a number.static <T extends RealFieldElement<T>>
TFastMath. exp(T x)Exponential function.static <T extends RealFieldElement<T>>
TFastMath. expm1(T x)Compute exp(x) - 1static <T extends RealFieldElement<T>>
TFastMath. floor(T x)Get the largest whole number smaller than x.static <T extends RealFieldElement<T>>
TFastMath. hypot(T x, T y)Returns the hypotenuse of a triangle with sidesxandy- sqrt(x2 +y2)
avoiding intermediate overflow or underflow.static <T extends RealFieldElement<T>>
TFastMath. IEEEremainder(T dividend, double divisor)Computes the remainder as prescribed by the IEEE 754 standard.static <T extends RealFieldElement<T>>
TFastMath. IEEEremainder(T dividend, T divisor)Computes the remainder as prescribed by the IEEE 754 standard.static <T extends RealFieldElement<T>>
TFastMath. log(T x)Natural logarithm.static <T extends RealFieldElement<T>>
TFastMath. log10(T x)Compute the base 10 logarithm.static <T extends RealFieldElement<T>>
TFastMath. log1p(T x)Computes log(1 + x).static <T extends RealFieldElement<T>>
TFastMath. max(T a, T b)Compute the maximum of two valuesstatic <T extends RealFieldElement<T>>
TMathUtils. max(T e1, T e2)Find the maximum of two field elements.static <T extends RealFieldElement<T>>
TFastMath. min(T a, T b)Compute the minimum of two valuesstatic <T extends RealFieldElement<T>>
TMathUtils. min(T e1, T e2)Find the minimum of two field elements.static <T extends RealFieldElement<T>>
TFastMath. pow(T d, int e)Raise a double to an int power.static <T extends RealFieldElement<T>>
TFastMath. pow(T x, T y)Power function.static <T extends RealFieldElement<T>>
TFastMath. rint(T x)Get the whole number that is the nearest to x, or the even one if x is exactly half way between two integers.static <T extends RealFieldElement<T>>
longFastMath. round(T x)Get the closest long to x.static <T extends RealFieldElement<T>>
TFastMath. scalb(T d, int n)Multiply a double number by a power of 2.static <T extends RealFieldElement<T>>
TFastMath. signum(T a)Compute the signum of a number.static <T extends RealFieldElement<T>>
TFastMath. sin(T x)Sine function.static <T extends RealFieldElement<T>>
FieldSinCos<T>FastMath. sinCos(T x)Combined Sine and Cosine function.static <T extends RealFieldElement<T>>
TFastMath. sinh(T x)Compute the hyperbolic sine of a number.static <T extends RealFieldElement<T>>
TFastMath. sqrt(T a)Compute the square root of a number.static <T extends RealFieldElement<T>>
TFastMath. tan(T x)Tangent function.static <T extends RealFieldElement<T>>
TFastMath. tanh(T x)Compute the hyperbolic tangent of a number.Methods in org.hipparchus.util that return RealFieldElement Modifier and Type Method Description T[]FieldTuple. getComponents()Get all components of the tuple.Constructors in org.hipparchus.util with parameters of type RealFieldElement Constructor Description FieldTuple(T... x)Creates a new instance from its components. 
 -