AbstractMultipleLinearRegression, GLSMultipleLinearRegression, OLSMultipleLinearRegressionpublic interface MultipleLinearRegression
y=X*b+uwhere y is an
n-vector regressand, X is a [n,k] matrix whose k columns are called
regressors, b is k-vector of regression parameters and u is an n-vector
of error terms or residuals.
The notation is quite standard in literature,
cf eg Davidson and MacKinnon, Econometrics Theory and Methods, 2004.| Modifier and Type | Method | Description |
|---|---|---|
double |
estimateRegressandVariance() |
Returns the variance of the regressand, ie Var(y).
|
double[] |
estimateRegressionParameters() |
Estimates the regression parameters b.
|
double[] |
estimateRegressionParametersStandardErrors() |
Returns the standard errors of the regression parameters.
|
double[][] |
estimateRegressionParametersVariance() |
Estimates the variance of the regression parameters, ie Var(b).
|
double[] |
estimateResiduals() |
Estimates the residuals, ie u = y - X*b.
|
double[] estimateRegressionParameters()
double[][] estimateRegressionParametersVariance()
double[] estimateResiduals()
double estimateRegressandVariance()
double[] estimateRegressionParametersStandardErrors()
Copyright © 2016–2018 Hipparchus.org. All rights reserved.