| Package | Description | 
|---|---|
| org.hipparchus.clustering | 
 Clustering algorithms. 
 | 
| org.hipparchus.distribution.multivariate | 
 Implementations of multivariate distributions. 
 | 
| org.hipparchus.optim.nonlinear.scalar.noderiv | 
 This package provides optimization algorithms that do not require derivatives. 
 | 
| org.hipparchus.optim.univariate | 
 One-dimensional optimization algorithms. 
 | 
| org.hipparchus.random | 
 Random number and random data generators. 
 | 
| org.hipparchus.samples | |
| org.hipparchus.stat.descriptive.rank | 
 Summary statistics based on ranks. 
 | 
| org.hipparchus.stat.fitting | 
 Statistical methods for fitting distributions. 
 | 
| org.hipparchus.stat.ranking | 
 Classes providing rank transformations. 
 | 
| org.hipparchus.util | 
 Convenience routines and common data structures used throughout the Hipparchus library. 
 | 
| Modifier and Type | Method | Description | 
|---|---|---|
RandomGenerator | 
FuzzyKMeansClusterer.getRandomGenerator() | 
 Returns the random generator this instance will use. 
 | 
RandomGenerator | 
KMeansPlusPlusClusterer.getRandomGenerator() | 
 Returns the random generator this instance will use. 
 | 
| Constructor | Description | 
|---|---|
FuzzyKMeansClusterer(int k,
                    double fuzziness,
                    int maxIterations,
                    DistanceMeasure measure,
                    double epsilon,
                    RandomGenerator random) | 
 Creates a new instance of a FuzzyKMeansClusterer. 
 | 
KMeansPlusPlusClusterer(int k,
                       int maxIterations,
                       DistanceMeasure measure,
                       RandomGenerator random) | 
 Build a clusterer. 
 | 
KMeansPlusPlusClusterer(int k,
                       int maxIterations,
                       DistanceMeasure measure,
                       RandomGenerator random,
                       KMeansPlusPlusClusterer.EmptyClusterStrategy emptyStrategy) | 
 Build a clusterer. 
 | 
| Modifier and Type | Field | Description | 
|---|---|---|
protected RandomGenerator | 
AbstractMultivariateRealDistribution.random | 
 RNG instance used to generate samples from the distribution. 
 | 
| Constructor | Description | 
|---|---|
AbstractMultivariateRealDistribution(RandomGenerator rng,
                                    int n) | 
|
MixtureMultivariateNormalDistribution(RandomGenerator rng,
                                     List<Pair<Double,MultivariateNormalDistribution>> components) | 
 Creates a mixture model from a list of distributions and their
 associated weights. 
 | 
MixtureMultivariateRealDistribution(RandomGenerator rng,
                                   List<Pair<Double,T>> components) | 
 Creates a mixture model from a list of distributions and their
 associated weights. 
 | 
MultivariateNormalDistribution(RandomGenerator rng,
                              double[] means,
                              double[][] covariances) | 
 Creates a multivariate normal distribution with the given mean vector and
 covariance matrix. 
 | 
| Constructor | Description | 
|---|---|
CMAESOptimizer(int maxIterations,
              double stopFitness,
              boolean isActiveCMA,
              int diagonalOnly,
              int checkFeasableCount,
              RandomGenerator random,
              boolean generateStatistics,
              ConvergenceChecker<PointValuePair> checker) | 
| Constructor | Description | 
|---|---|
MultiStartUnivariateOptimizer(UnivariateOptimizer optimizer,
                             int starts,
                             RandomGenerator generator) | 
 Create a multi-start optimizer from a single-start optimizer. 
 | 
| Modifier and Type | Class | Description | 
|---|---|---|
class  | 
AbstractWell | 
 This abstract class implements the WELL class of pseudo-random number generator
 from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto. 
 | 
class  | 
ISAACRandom | 
 A fast cryptographic pseudo-random number generator. 
 | 
class  | 
JDKRandomGenerator | 
 A  
RandomGenerator adapter that delegates the random number
 generation to the standard Random class. | 
class  | 
MersenneTwister | 
 This class implements a powerful pseudo-random number generator
 developed by Makoto Matsumoto and Takuji Nishimura during
 1996-1997. 
 | 
class  | 
RandomAdaptor | 
 Extension of  
Random wrapping a
 RandomGenerator. | 
class  | 
RandomDataGenerator | 
 A class for generating random data. 
 | 
class  | 
SynchronizedRandomGenerator | 
 Any  
RandomGenerator implementation can be thread-safe if it
 is used through an instance of this class. | 
class  | 
Well1024a | 
 This class implements the WELL1024a pseudo-random number generator
 from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto. 
 | 
class  | 
Well19937a | 
 This class implements the WELL19937a pseudo-random number generator
 from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto. 
 | 
class  | 
Well19937c | 
 This class implements the WELL19937c pseudo-random number generator
 from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto. 
 | 
class  | 
Well44497a | 
 This class implements the WELL44497a pseudo-random number generator
 from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto. 
 | 
class  | 
Well44497b | 
 This class implements the WELL44497b pseudo-random number generator
 from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto. 
 | 
class  | 
Well512a | 
 This class implements the WELL512a pseudo-random number generator
 from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto. 
 | 
| Modifier and Type | Method | Description | 
|---|---|---|
protected RandomGenerator | 
RandomDataGenerator.delegate() | 
 Returns the backing delegate instance that methods are forwarded to. 
 | 
| Modifier and Type | Method | Description | 
|---|---|---|
static Random | 
RandomAdaptor.of(RandomGenerator randomGenerator) | 
 Factory method to create a  
Random using the supplied
 RandomGenerator. | 
static RandomDataGenerator | 
RandomDataGenerator.of(RandomGenerator randomGenerator) | 
 Factory method to create a  
RandomData instance using the supplied
 RandomGenerator. | 
| Constructor | Description | 
|---|---|
GaussianRandomGenerator(RandomGenerator generator) | 
 Create a new generator. 
 | 
RandomAdaptor(RandomGenerator randomGenerator) | 
 Construct a RandomAdaptor wrapping the supplied RandomGenerator. 
 | 
StableRandomGenerator(RandomGenerator generator,
                     double alpha,
                     double beta) | 
 Create a new generator. 
 | 
SynchronizedRandomGenerator(RandomGenerator rng) | 
 Creates a synchronized wrapper for the given  
RandomGenerator
 instance. | 
UniformRandomGenerator(RandomGenerator generator) | 
 Create a new generator. 
 | 
UnitSphereRandomVectorGenerator(int dimension,
                               RandomGenerator rand) | 
| Modifier and Type | Method | Description | 
|---|---|---|
static Vector2D | 
ClusterAlgorithmComparison.generateNoiseVector(RandomGenerator randomGenerator,
                   double noise) | 
|
static List<Vector2D> | 
ClusterAlgorithmComparison.makeBlobs(int samples,
         int centers,
         double clusterStd,
         double min,
         double max,
         boolean shuffle,
         RandomGenerator random) | 
|
static List<Vector2D> | 
ClusterAlgorithmComparison.makeCircles(int samples,
           boolean shuffle,
           double noise,
           double factor,
           RandomGenerator random) | 
|
static List<Vector2D> | 
ClusterAlgorithmComparison.makeMoons(int samples,
         boolean shuffle,
         double noise,
         RandomGenerator random) | 
| Constructor | Description | 
|---|---|
RandomPercentile(double epsilon,
                RandomGenerator randomGenerator) | 
 Constructs a  
RandomPercentile with quantile estimation error
 epsilon using randomGenerator as its source of random data. | 
RandomPercentile(RandomGenerator randomGenerator) | 
 Constructs a  
RandomPercentile with default estimation error
 using randomGenerator as its source of random data. | 
| Constructor | Description | 
|---|---|
EmpiricalDistribution(int binCount,
                     RandomGenerator generator) | 
 Creates a new EmpiricalDistribution with the specified bin count using the
 provided  
RandomGenerator as the source of random data. | 
EmpiricalDistribution(RandomGenerator generator) | 
 Creates a new EmpiricalDistribution with default bin count using the
 provided  
RandomGenerator as the source of random data. | 
| Constructor | Description | 
|---|---|
NaturalRanking(RandomGenerator randomGenerator) | 
 Create a NaturalRanking with TiesStrategy.RANDOM and the given
 RandomGenerator as the source of random data. 
 | 
NaturalRanking(NaNStrategy nanStrategy,
              RandomGenerator randomGenerator) | 
 Create a NaturalRanking with the given NaNStrategy, TiesStrategy.RANDOM
 and the given source of random data. 
 | 
| Modifier and Type | Method | Description | 
|---|---|---|
static void | 
MathArrays.shuffle(int[] list,
       int start,
       MathArrays.Position pos,
       RandomGenerator rng) | 
 Shuffle the entries of the given array, using the
 
 Fisher–Yates algorithm. 
 | 
static void | 
MathArrays.shuffle(int[] list,
       RandomGenerator rng) | 
 Shuffle the entries of the given array. 
 | 
Copyright © 2016–2018 Hipparchus.org. All rights reserved.