Package | Description |
---|---|
org.hipparchus.optim.nonlinear.vector.leastsquares |
This package provides algorithms that minimize the residuals
between observations and model values.
|
Modifier and Type | Method | Description |
---|---|---|
LeastSquaresBuilder |
LeastSquaresBuilder.checker(ConvergenceChecker<LeastSquaresProblem.Evaluation> newChecker) |
Configure the convergence checker.
|
LeastSquaresBuilder |
LeastSquaresBuilder.checkerPair(ConvergenceChecker<PointVectorValuePair> newChecker) |
Configure the convergence checker.
|
LeastSquaresBuilder |
LeastSquaresBuilder.lazyEvaluation(boolean newValue) |
Configure whether evaluation will be lazy or not.
|
LeastSquaresBuilder |
LeastSquaresBuilder.maxEvaluations(int newMaxEvaluations) |
Configure the max evaluations.
|
LeastSquaresBuilder |
LeastSquaresBuilder.maxIterations(int newMaxIterations) |
Configure the max iterations.
|
LeastSquaresBuilder |
LeastSquaresBuilder.model(MultivariateVectorFunction value,
MultivariateMatrixFunction jacobian) |
Configure the model function.
|
LeastSquaresBuilder |
LeastSquaresBuilder.model(MultivariateJacobianFunction newModel) |
Configure the model function.
|
LeastSquaresBuilder |
LeastSquaresBuilder.parameterValidator(ParameterValidator newValidator) |
Configure the validator of the model parameters.
|
LeastSquaresBuilder |
LeastSquaresBuilder.start(double[] newStart) |
Configure the initial guess.
|
LeastSquaresBuilder |
LeastSquaresBuilder.start(RealVector newStart) |
Configure the initial guess.
|
LeastSquaresBuilder |
LeastSquaresBuilder.target(double[] newTarget) |
Configure the observed data.
|
LeastSquaresBuilder |
LeastSquaresBuilder.target(RealVector newTarget) |
Configure the observed data.
|
LeastSquaresBuilder |
LeastSquaresBuilder.weight(RealMatrix newWeight) |
Configure the weight matrix.
|
Copyright © 2016–2018 Hipparchus.org. All rights reserved.