LeastSquaresProblem.Evaluation
public abstract class AbstractEvaluation extends Object implements LeastSquaresProblem.Evaluation
LeastSquaresProblem.Evaluation
that is designed for extension. All of the
methods implemented here use the methods that are left unimplemented.
TODO cache results?Modifier and Type | Method | Description |
---|---|---|
double |
getChiSquare() |
Get the sum of the squares of the residuals.
|
double |
getCost() |
Get the cost.
|
RealMatrix |
getCovariances(double threshold) |
Get the covariance matrix of the optimized parameters.
|
double |
getReducedChiSquare(int numberOfFittedParameters) |
Get the reduced chi-square.
|
double |
getRMS() |
Get the normalized cost.
|
RealVector |
getSigma(double covarianceSingularityThreshold) |
Get an estimate of the standard deviation of the parameters.
|
getJacobian, getPoint, getResiduals
public RealMatrix getCovariances(double threshold)
JTJ
matrix,
where J
is the Jacobian matrix. The threshold
parameter is a
way for the caller to specify that the result of this computation should be
considered meaningless, and thus trigger an exception.getCovariances
in interface LeastSquaresProblem.Evaluation
threshold
- Singularity threshold.public RealVector getSigma(double covarianceSingularityThreshold)
sd(a[i]) ~= sqrt(C[i][i])
, where a[i]
is the optimized
value of the i
-th parameter, and C
is the covariance matrix.getSigma
in interface LeastSquaresProblem.Evaluation
covarianceSingularityThreshold
- Singularity threshold (see computeCovariances
).public double getRMS()
getRMS
in interface LeastSquaresProblem.Evaluation
public double getCost()
objective function
.getCost
in interface LeastSquaresProblem.Evaluation
LeastSquaresProblem.Evaluation.getResiduals()
,
LeastSquaresProblem.Evaluation.getChiSquare()
public double getChiSquare()
getChiSquare
in interface LeastSquaresProblem.Evaluation
LeastSquaresProblem.Evaluation.getResiduals()
,
LeastSquaresProblem.Evaluation.getCost()
public double getReducedChiSquare(int numberOfFittedParameters)
getReducedChiSquare
in interface LeastSquaresProblem.Evaluation
numberOfFittedParameters
- Number of fitted parameters.Copyright © 2016–2018 Hipparchus.org. All rights reserved.