GaussianCurveFitter, HarmonicCurveFitter, PolynomialCurveFitter, SimpleCurveFitterpublic abstract class AbstractCurveFitter extends Object
y = f(pi;x), where x is
 the independent variable and the pi are the
 parameters.
 N observed points (xk, yk),
 0 <= k < N.
 
  ∑yk - f(xk)2,
 
 which is actually a least-squares problem.
 This class contains boilerplate code for calling the
 fit(Collection) method for obtaining the parameters.
 The problem setup, such as the choice of optimization algorithm
 for fitting a specific function is delegated to subclasses.| Modifier and Type | Class | Description | 
|---|---|---|
protected static class  | 
AbstractCurveFitter.TheoreticalValuesFunction | 
 Vector function for computing function theoretical values. 
 | 
| Constructor | Description | 
|---|---|
AbstractCurveFitter() | 
| Modifier and Type | Method | Description | 
|---|---|---|
double[] | 
fit(Collection<WeightedObservedPoint> points) | 
 Fits a curve. 
 | 
protected LeastSquaresOptimizer | 
getOptimizer() | 
 Creates an optimizer set up to fit the appropriate curve. 
 | 
protected abstract LeastSquaresProblem | 
getProblem(Collection<WeightedObservedPoint> points) | 
 Creates a least squares problem corresponding to the appropriate curve. 
 | 
public double[] fit(Collection<WeightedObservedPoint> points)
points - Observations.protected LeastSquaresOptimizer getOptimizer()
 The default implementation uses a Levenberg-Marquardt optimizer.
 
points.protected abstract LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> points)
points - Sample points.points.Copyright © 2016–2018 Hipparchus.org. All rights reserved.