T - the type of the field elementsFieldElement<T>, RealFieldElement<FieldDerivativeStructure<T>>public class FieldDerivativeStructure<T extends RealFieldElement<T>> extends Object implements RealFieldElement<FieldDerivativeStructure<T>>
This class is similar to DerivativeStructure except function
parameters and value can be any RealFieldElement.
Instances of this class are guaranteed to be immutable.
DerivativeStructure,
FDSFactory,
DSCompiler| Modifier and Type | Method | Description |
|---|---|---|
FieldDerivativeStructure<T> |
abs() |
absolute value.
|
FieldDerivativeStructure<T> |
acos() |
Arc cosine operation.
|
FieldDerivativeStructure<T> |
acosh() |
Inverse hyperbolic cosine operation.
|
FieldDerivativeStructure<T> |
add(double a) |
'+' operator.
|
FieldDerivativeStructure<T> |
add(FieldDerivativeStructure<T> a) |
Compute this + a.
|
FieldDerivativeStructure<T> |
add(T a) |
'+' operator.
|
FieldDerivativeStructure<T> |
asin() |
Arc sine operation.
|
FieldDerivativeStructure<T> |
asinh() |
Inverse hyperbolic sine operation.
|
FieldDerivativeStructure<T> |
atan() |
Arc tangent operation.
|
FieldDerivativeStructure<T> |
atan2(FieldDerivativeStructure<T> x) |
Two arguments arc tangent operation.
|
static <T extends RealFieldElement<T>> |
atan2(FieldDerivativeStructure<T> y,
FieldDerivativeStructure<T> x) |
Two arguments arc tangent operation.
|
FieldDerivativeStructure<T> |
atanh() |
Inverse hyperbolic tangent operation.
|
FieldDerivativeStructure<T> |
cbrt() |
Cubic root.
|
FieldDerivativeStructure<T> |
ceil() |
Get the smallest whole number larger than instance.
|
FieldDerivativeStructure<T> |
compose(double... f) |
Compute composition of the instance by a univariate function.
|
FieldDerivativeStructure<T> |
compose(T... f) |
Compute composition of the instance by a univariate function.
|
FieldDerivativeStructure<T> |
copySign(double sign) |
Returns the instance with the sign of the argument.
|
FieldDerivativeStructure<T> |
copySign(FieldDerivativeStructure<T> sign) |
Returns the instance with the sign of the argument.
|
FieldDerivativeStructure<T> |
copySign(T sign) |
Returns the instance with the sign of the argument.
|
FieldDerivativeStructure<T> |
cos() |
Cosine operation.
|
FieldDerivativeStructure<T> |
cosh() |
Hyperbolic cosine operation.
|
FieldDerivativeStructure<T> |
divide(double a) |
'÷' operator.
|
FieldDerivativeStructure<T> |
divide(FieldDerivativeStructure<T> a) |
Compute this ÷ a.
|
FieldDerivativeStructure<T> |
divide(T a) |
'÷' operator.
|
FieldDerivativeStructure<T> |
exp() |
Exponential.
|
FieldDerivativeStructure<T> |
expm1() |
Exponential minus 1.
|
FieldDerivativeStructure<T> |
floor() |
Get the largest whole number smaller than instance.
|
T[] |
getAllDerivatives() |
Get all partial derivatives.
|
int |
getExponent() |
Return the exponent of the instance value, removing the bias.
|
FDSFactory<T> |
getFactory() |
Get the factory that built the instance.
|
Field<FieldDerivativeStructure<T>> |
getField() |
Get the
Field to which the instance belongs. |
int |
getFreeParameters() |
Get the number of free parameters.
|
int |
getOrder() |
Get the derivation order.
|
T |
getPartialDerivative(int... orders) |
Get a partial derivative.
|
double |
getReal() |
Get the real value of the number.
|
T |
getValue() |
Get the value part of the derivative structure.
|
FieldDerivativeStructure<T> |
hypot(FieldDerivativeStructure<T> y) |
Returns the hypotenuse of a triangle with sides
this and y
- sqrt(this2 +y2)
avoiding intermediate overflow or underflow. |
static <T extends RealFieldElement<T>> |
hypot(FieldDerivativeStructure<T> x,
FieldDerivativeStructure<T> y) |
Returns the hypotenuse of a triangle with sides
x and y
- sqrt(x2 +y2)
avoiding intermediate overflow or underflow. |
FieldDerivativeStructure<T> |
linearCombination(double[] a,
FieldDerivativeStructure<T>[] b) |
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(double a1,
FieldDerivativeStructure<T> b1,
double a2,
FieldDerivativeStructure<T> b2) |
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(double a1,
FieldDerivativeStructure<T> b1,
double a2,
FieldDerivativeStructure<T> b2,
double a3,
FieldDerivativeStructure<T> b3) |
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(double a1,
FieldDerivativeStructure<T> b1,
double a2,
FieldDerivativeStructure<T> b2,
double a3,
FieldDerivativeStructure<T> b3,
double a4,
FieldDerivativeStructure<T> b4) |
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(FieldDerivativeStructure<T>[] a,
FieldDerivativeStructure<T>[] b) |
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(FieldDerivativeStructure<T> a1,
FieldDerivativeStructure<T> b1,
FieldDerivativeStructure<T> a2,
FieldDerivativeStructure<T> b2) |
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(FieldDerivativeStructure<T> a1,
FieldDerivativeStructure<T> b1,
FieldDerivativeStructure<T> a2,
FieldDerivativeStructure<T> b2,
FieldDerivativeStructure<T> a3,
FieldDerivativeStructure<T> b3) |
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(FieldDerivativeStructure<T> a1,
FieldDerivativeStructure<T> b1,
FieldDerivativeStructure<T> a2,
FieldDerivativeStructure<T> b2,
FieldDerivativeStructure<T> a3,
FieldDerivativeStructure<T> b3,
FieldDerivativeStructure<T> a4,
FieldDerivativeStructure<T> b4) |
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(T[] a,
FieldDerivativeStructure<T>[] b) |
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(T a1,
FieldDerivativeStructure<T> b1,
T a2,
FieldDerivativeStructure<T> b2) |
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(T a1,
FieldDerivativeStructure<T> b1,
T a2,
FieldDerivativeStructure<T> b2,
T a3,
FieldDerivativeStructure<T> b3) |
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(T a1,
FieldDerivativeStructure<T> b1,
T a2,
FieldDerivativeStructure<T> b2,
T a3,
FieldDerivativeStructure<T> b3,
T a4,
FieldDerivativeStructure<T> b4) |
Compute a linear combination.
|
FieldDerivativeStructure<T> |
log() |
Natural logarithm.
|
FieldDerivativeStructure<T> |
log10() |
Base 10 logarithm.
|
FieldDerivativeStructure<T> |
log1p() |
Shifted natural logarithm.
|
FieldDerivativeStructure<T> |
multiply(double a) |
'×' operator.
|
FieldDerivativeStructure<T> |
multiply(int n) |
Compute n × this.
|
FieldDerivativeStructure<T> |
multiply(FieldDerivativeStructure<T> a) |
Compute this × a.
|
FieldDerivativeStructure<T> |
multiply(T a) |
'×' operator.
|
FieldDerivativeStructure<T> |
negate() |
Returns the additive inverse of
this element. |
FieldDerivativeStructure<T> |
pow(double p) |
Power operation.
|
static <T extends RealFieldElement<T>> |
pow(double a,
FieldDerivativeStructure<T> x) |
Compute ax where a is a double and x a
FieldDerivativeStructure |
FieldDerivativeStructure<T> |
pow(int n) |
Integer power operation.
|
FieldDerivativeStructure<T> |
pow(FieldDerivativeStructure<T> e) |
Power operation.
|
FieldDerivativeStructure<T> |
reciprocal() |
Returns the multiplicative inverse of
this element. |
FieldDerivativeStructure<T> |
remainder(double a) |
IEEE remainder operator.
|
FieldDerivativeStructure<T> |
remainder(FieldDerivativeStructure<T> a) |
IEEE remainder operator.
|
FieldDerivativeStructure<T> |
remainder(T a) |
IEEE remainder operator.
|
FieldDerivativeStructure<T> |
rint() |
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.
|
FieldDerivativeStructure<T> |
rootN(int n) |
Nth root.
|
long |
round() |
Get the closest long to instance value.
|
FieldDerivativeStructure<T> |
scalb(int n) |
Multiply the instance by a power of 2.
|
FieldDerivativeStructure<T> |
signum() |
Compute the signum of the instance.
|
FieldDerivativeStructure<T> |
sin() |
Sine operation.
|
FieldDerivativeStructure<T> |
sinh() |
Hyperbolic sine operation.
|
FieldDerivativeStructure<T> |
sqrt() |
Square root.
|
FieldDerivativeStructure<T> |
subtract(double a) |
'-' operator.
|
FieldDerivativeStructure<T> |
subtract(FieldDerivativeStructure<T> a) |
Compute this - a.
|
FieldDerivativeStructure<T> |
subtract(T a) |
'-' operator.
|
FieldDerivativeStructure<T> |
tan() |
Tangent operation.
|
FieldDerivativeStructure<T> |
tanh() |
Hyperbolic tangent operation.
|
T |
taylor(double... delta) |
Evaluate Taylor expansion of a derivative structure.
|
T |
taylor(T... delta) |
Evaluate Taylor expansion of a derivative structure.
|
FieldDerivativeStructure<T> |
toDegrees() |
Convert radians to degrees, with error of less than 0.5 ULP
|
FieldDerivativeStructure<T> |
toRadians() |
Convert degrees to radians, with error of less than 0.5 ULP
|
public FDSFactory<T> getFactory()
public int getFreeParameters()
public int getOrder()
public double getReal()
getReal in interface RealFieldElement<T extends RealFieldElement<T>>public T getValue()
getPartialDerivative(int...)public T getPartialDerivative(int... orders) throws MathIllegalArgumentException
orders - derivation orders with respect to each variable (if all orders are 0,
the value is returned)MathIllegalArgumentException - if the numbers of variables does not
match the instanceMathIllegalArgumentException - if sum of derivation orders is larger
than the instance limitsgetValue()public T[] getAllDerivatives()
DSCompiler.getPartialDerivativeIndex(int...)public FieldDerivativeStructure<T> add(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> add(double a)
add in interface RealFieldElement<T extends RealFieldElement<T>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> add(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
add in interface FieldElement<T extends RealFieldElement<T>>a - element to addMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> subtract(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> subtract(double a)
subtract in interface RealFieldElement<T extends RealFieldElement<T>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> subtract(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
subtract in interface FieldElement<T extends RealFieldElement<T>>a - element to subtractMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> multiply(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> multiply(int n)
multiply in interface FieldElement<T extends RealFieldElement<T>>n - Number of times this must be added to itself.public FieldDerivativeStructure<T> multiply(double a)
multiply in interface RealFieldElement<T extends RealFieldElement<T>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> multiply(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
multiply in interface FieldElement<T extends RealFieldElement<T>>a - element to multiplyMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> divide(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> divide(double a)
divide in interface RealFieldElement<T extends RealFieldElement<T>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> divide(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
divide in interface FieldElement<T extends RealFieldElement<T>>a - element to divide byMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> remainder(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> remainder(double a)
remainder in interface RealFieldElement<T extends RealFieldElement<T>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> remainder(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
remainder in interface RealFieldElement<T extends RealFieldElement<T>>a - right hand side parameter of the operatorMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> negate()
this element.negate in interface FieldElement<T extends RealFieldElement<T>>this.public FieldDerivativeStructure<T> abs()
abs in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> ceil()
ceil in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> floor()
floor in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> rint()
rint in interface RealFieldElement<T extends RealFieldElement<T>>public long round()
round in interface RealFieldElement<T extends RealFieldElement<T>>RealFieldElement.getReal()public FieldDerivativeStructure<T> signum()
signum in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> copySign(T sign)
sign argument is treated as positive.sign - the sign for the returned valuesign argumentpublic FieldDerivativeStructure<T> copySign(double sign)
sign argument is treated as positive.copySign in interface RealFieldElement<T extends RealFieldElement<T>>sign - the sign for the returned valuesign argumentpublic FieldDerivativeStructure<T> copySign(FieldDerivativeStructure<T> sign)
sign argument is treated as positive.copySign in interface RealFieldElement<T extends RealFieldElement<T>>sign - the sign for the returned valuesign argumentpublic int getExponent()
For double numbers of the form 2x, the unbiased exponent is exactly x.
public FieldDerivativeStructure<T> scalb(int n)
scalb in interface RealFieldElement<T extends RealFieldElement<T>>n - power of 2public FieldDerivativeStructure<T> hypot(FieldDerivativeStructure<T> y) throws MathIllegalArgumentException
this and y
- sqrt(this2 +y2)
avoiding intermediate overflow or underflow.
hypot in interface RealFieldElement<T extends RealFieldElement<T>>y - a valueMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic static <T extends RealFieldElement<T>> FieldDerivativeStructure<T> hypot(FieldDerivativeStructure<T> x, FieldDerivativeStructure<T> y) throws MathIllegalArgumentException
x and y
- sqrt(x2 +y2)
avoiding intermediate overflow or underflow.
T - the type of the field elementsx - a valuey - a valueMathIllegalArgumentException - if number of free parameters
or orders do not match@SafeVarargs public final FieldDerivativeStructure<T> compose(T... f) throws MathIllegalArgumentException
f - array of value and derivatives of the function at
the current point (i.e. [f(getValue()),
f'(getValue()), f''(getValue())...]).MathIllegalArgumentException - if the number of derivatives
in the array is not equal to order + 1public FieldDerivativeStructure<T> compose(double... f) throws MathIllegalArgumentException
f - array of value and derivatives of the function at
the current point (i.e. [f(getValue()),
f'(getValue()), f''(getValue())...]).MathIllegalArgumentException - if the number of derivatives
in the array is not equal to order + 1public FieldDerivativeStructure<T> reciprocal()
this element.reciprocal in interface FieldElement<T extends RealFieldElement<T>>reciprocal in interface RealFieldElement<T extends RealFieldElement<T>>this.public FieldDerivativeStructure<T> sqrt()
sqrt in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> cbrt()
cbrt in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> rootN(int n)
rootN in interface RealFieldElement<T extends RealFieldElement<T>>n - order of the rootpublic Field<FieldDerivativeStructure<T>> getField()
Field to which the instance belongs.getField in interface FieldElement<T extends RealFieldElement<T>>Field to which the instance belongspublic static <T extends RealFieldElement<T>> FieldDerivativeStructure<T> pow(double a, FieldDerivativeStructure<T> x)
FieldDerivativeStructureT - the type of the field elementsa - number to exponentiatex - power to applypublic FieldDerivativeStructure<T> pow(double p)
pow in interface RealFieldElement<T extends RealFieldElement<T>>p - power to applypublic FieldDerivativeStructure<T> pow(int n)
pow in interface RealFieldElement<T extends RealFieldElement<T>>n - power to applypublic FieldDerivativeStructure<T> pow(FieldDerivativeStructure<T> e) throws MathIllegalArgumentException
pow in interface RealFieldElement<T extends RealFieldElement<T>>e - exponentMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> exp()
exp in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> expm1()
expm1 in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> log()
log in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> log1p()
log1p in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> log10()
log10 in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> cos()
cos in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> sin()
sin in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> tan()
tan in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> acos()
acos in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> asin()
asin in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> atan()
atan in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> atan2(FieldDerivativeStructure<T> x) throws MathIllegalArgumentException
atan2 in interface RealFieldElement<T extends RealFieldElement<T>>x - second argument of the arc tangentMathIllegalArgumentException - if number of free parameters or orders are inconsistentpublic static <T extends RealFieldElement<T>> FieldDerivativeStructure<T> atan2(FieldDerivativeStructure<T> y, FieldDerivativeStructure<T> x) throws MathIllegalArgumentException
T - the type of the field elementsy - first argument of the arc tangentx - second argument of the arc tangentMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> cosh()
cosh in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> sinh()
sinh in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> tanh()
tanh in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> acosh()
acosh in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> asinh()
asinh in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> atanh()
atanh in interface RealFieldElement<T extends RealFieldElement<T>>public FieldDerivativeStructure<T> toDegrees()
public FieldDerivativeStructure<T> toRadians()
@SafeVarargs public final T taylor(T... delta) throws MathRuntimeException
delta - parameters offsets (Δx, Δy, ...)MathRuntimeException - if factorials becomes too largepublic T taylor(double... delta) throws MathRuntimeException
delta - parameters offsets (Δx, Δy, ...)MathRuntimeException - if factorials becomes too largepublic FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T>[] a, FieldDerivativeStructure<T>[] b) throws MathIllegalArgumentException
linearCombination in interface RealFieldElement<T extends RealFieldElement<T>>a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> linearCombination(T[] a, FieldDerivativeStructure<T>[] b) throws MathIllegalArgumentException
a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if arrays dimensions don't matchpublic FieldDerivativeStructure<T> linearCombination(double[] a, FieldDerivativeStructure<T>[] b) throws MathIllegalArgumentException
linearCombination in interface RealFieldElement<T extends RealFieldElement<T>>a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2) throws MathIllegalArgumentException
linearCombination in interface RealFieldElement<T extends RealFieldElement<T>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termMathIllegalArgumentException - if number of free parameters
or orders do not matchRealFieldElement.linearCombination(Object, Object, Object, Object, Object, Object),
RealFieldElement.linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)public FieldDerivativeStructure<T> linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2) throws MathIllegalArgumentException
a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termMathIllegalArgumentException - if number of free parameters or orders are inconsistentRealFieldElement.linearCombination(double, Object, double, Object, double, Object),
RealFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)public FieldDerivativeStructure<T> linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2) throws MathIllegalArgumentException
linearCombination in interface RealFieldElement<T extends RealFieldElement<T>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termMathIllegalArgumentException - if number of free parameters
or orders do not matchRealFieldElement.linearCombination(double, Object, double, Object, double, Object),
RealFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)public FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3) throws MathIllegalArgumentException
linearCombination in interface RealFieldElement<T extends RealFieldElement<T>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termMathIllegalArgumentException - if number of free parameters
or orders do not matchRealFieldElement.linearCombination(Object, Object, Object, Object),
RealFieldElement.linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)public FieldDerivativeStructure<T> linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3) throws MathIllegalArgumentException
a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termMathIllegalArgumentException - if number of free parameters or orders are inconsistentRealFieldElement.linearCombination(double, Object, double, Object),
RealFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)public FieldDerivativeStructure<T> linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3) throws MathIllegalArgumentException
linearCombination in interface RealFieldElement<T extends RealFieldElement<T>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termMathIllegalArgumentException - if number of free parameters
or orders do not matchRealFieldElement.linearCombination(double, Object, double, Object),
RealFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)public FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3, FieldDerivativeStructure<T> a4, FieldDerivativeStructure<T> b4) throws MathIllegalArgumentException
linearCombination in interface RealFieldElement<T extends RealFieldElement<T>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the fourth termb4 - second factor of the fourth termMathIllegalArgumentException - if number of free parameters
or orders do not matchRealFieldElement.linearCombination(Object, Object, Object, Object),
RealFieldElement.linearCombination(Object, Object, Object, Object, Object, Object)public FieldDerivativeStructure<T> linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3, T a4, FieldDerivativeStructure<T> b4) throws MathIllegalArgumentException
a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the third termb4 - second factor of the third termMathIllegalArgumentException - if number of free parameters or orders are inconsistentRealFieldElement.linearCombination(double, Object, double, Object),
RealFieldElement.linearCombination(double, Object, double, Object, double, Object)public FieldDerivativeStructure<T> linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3, double a4, FieldDerivativeStructure<T> b4) throws MathIllegalArgumentException
linearCombination in interface RealFieldElement<T extends RealFieldElement<T>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the fourth termb4 - second factor of the fourth termMathIllegalArgumentException - if number of free parameters
or orders do not matchRealFieldElement.linearCombination(double, Object, double, Object),
RealFieldElement.linearCombination(double, Object, double, Object, double, Object)Copyright © 2016–2018 Hipparchus.org. All rights reserved.