Package | Description |
---|---|
org.hipparchus.analysis |
Parent package for common numerical analysis procedures, including root finding,
function interpolation and integration.
|
org.hipparchus.analysis.differentiation |
This package holds the main interfaces and basic building block classes
dealing with differentiation.
|
org.hipparchus.fitting |
Classes to perform curve fitting.
|
org.hipparchus.optim.nonlinear.scalar |
Algorithms for optimizing a scalar function.
|
org.hipparchus.optim.nonlinear.vector.leastsquares |
This package provides algorithms that minimize the residuals
between observations and model values.
|
Modifier and Type | Method | Description |
---|---|---|
static MultivariateDifferentiableFunction |
FunctionUtils.toDifferentiable(MultivariateFunction f,
MultivariateVectorFunction gradient) |
Convert regular functions to
MultivariateDifferentiableFunction . |
Modifier and Type | Interface | Description |
---|---|---|
interface |
MultivariateDifferentiableVectorFunction |
Extension of
MultivariateVectorFunction representing a
multivariate differentiable vectorial function. |
Modifier and Type | Class | Description |
---|---|---|
class |
GradientFunction |
Class representing the gradient of a multivariate function.
|
Modifier and Type | Method | Description |
---|---|---|
MultivariateVectorFunction |
AbstractCurveFitter.TheoreticalValuesFunction.getModelFunction() |
Modifier and Type | Method | Description |
---|---|---|
MultivariateVectorFunction |
ObjectiveFunctionGradient.getObjectiveFunctionGradient() |
Gets the gradient of the function to be optimized.
|
Constructor | Description |
---|---|
LeastSquaresConverter(MultivariateVectorFunction function,
double[] observations) |
Builds a simple converter for uncorrelated residuals with identical
weights.
|
LeastSquaresConverter(MultivariateVectorFunction function,
double[] observations,
double[] weights) |
Builds a simple converter for uncorrelated residuals with the
specified weights.
|
LeastSquaresConverter(MultivariateVectorFunction function,
double[] observations,
RealMatrix scale) |
Builds a simple converter for correlated residuals with the
specified weights.
|
ObjectiveFunctionGradient(MultivariateVectorFunction g) |
Modifier and Type | Method | Description |
---|---|---|
static LeastSquaresProblem |
LeastSquaresFactory.create(MultivariateVectorFunction model,
MultivariateMatrixFunction jacobian,
double[] observed,
double[] start,
RealMatrix weight,
ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
int maxEvaluations,
int maxIterations) |
Create a
LeastSquaresProblem
from the given elements. |
LeastSquaresBuilder |
LeastSquaresBuilder.model(MultivariateVectorFunction value,
MultivariateMatrixFunction jacobian) |
Configure the model function.
|
static MultivariateJacobianFunction |
LeastSquaresFactory.model(MultivariateVectorFunction value,
MultivariateMatrixFunction jacobian) |
Combine a
MultivariateVectorFunction with a MultivariateMatrixFunction to produce a MultivariateJacobianFunction . |
Copyright © 2016–2018 Hipparchus.org. All rights reserved.