| Package | Description | 
|---|---|
| org.hipparchus.analysis | 
 
      Parent package for common numerical analysis procedures, including root finding,
      function interpolation and integration. 
 | 
| org.hipparchus.analysis.differentiation | 
 
   This package holds the main interfaces and basic building block classes
   dealing with differentiation. 
 | 
| org.hipparchus.fitting | 
 Classes to perform curve fitting. 
 | 
| org.hipparchus.optim.nonlinear.scalar | 
 Algorithms for optimizing a scalar function. 
 | 
| org.hipparchus.optim.nonlinear.vector.leastsquares | 
 This package provides algorithms that minimize the residuals
 between observations and model values. 
 | 
| Modifier and Type | Method | Description | 
|---|---|---|
static MultivariateDifferentiableFunction | 
FunctionUtils.toDifferentiable(MultivariateFunction f,
                MultivariateVectorFunction gradient) | 
 Convert regular functions to  
MultivariateDifferentiableFunction. | 
| Modifier and Type | Interface | Description | 
|---|---|---|
interface  | 
MultivariateDifferentiableVectorFunction | 
 Extension of  
MultivariateVectorFunction representing a
 multivariate differentiable vectorial function. | 
| Modifier and Type | Class | Description | 
|---|---|---|
class  | 
GradientFunction | 
 Class representing the gradient of a multivariate function. 
 | 
| Modifier and Type | Method | Description | 
|---|---|---|
MultivariateVectorFunction | 
AbstractCurveFitter.TheoreticalValuesFunction.getModelFunction() | 
| Modifier and Type | Method | Description | 
|---|---|---|
MultivariateVectorFunction | 
ObjectiveFunctionGradient.getObjectiveFunctionGradient() | 
 Gets the gradient of the function to be optimized. 
 | 
| Constructor | Description | 
|---|---|
LeastSquaresConverter(MultivariateVectorFunction function,
                     double[] observations) | 
 Builds a simple converter for uncorrelated residuals with identical
 weights. 
 | 
LeastSquaresConverter(MultivariateVectorFunction function,
                     double[] observations,
                     double[] weights) | 
 Builds a simple converter for uncorrelated residuals with the
 specified weights. 
 | 
LeastSquaresConverter(MultivariateVectorFunction function,
                     double[] observations,
                     RealMatrix scale) | 
 Builds a simple converter for correlated residuals with the
 specified weights. 
 | 
ObjectiveFunctionGradient(MultivariateVectorFunction g) | 
| Modifier and Type | Method | Description | 
|---|---|---|
static LeastSquaresProblem | 
LeastSquaresFactory.create(MultivariateVectorFunction model,
      MultivariateMatrixFunction jacobian,
      double[] observed,
      double[] start,
      RealMatrix weight,
      ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
      int maxEvaluations,
      int maxIterations) | 
 Create a  
LeastSquaresProblem
 from the given elements. | 
LeastSquaresBuilder | 
LeastSquaresBuilder.model(MultivariateVectorFunction value,
     MultivariateMatrixFunction jacobian) | 
 Configure the model function. 
 | 
static MultivariateJacobianFunction | 
LeastSquaresFactory.model(MultivariateVectorFunction value,
     MultivariateMatrixFunction jacobian) | 
 Combine a  
MultivariateVectorFunction with a MultivariateMatrixFunction to produce a MultivariateJacobianFunction. | 
Copyright © 2016–2018 Hipparchus.org. All rights reserved.