Package | Description |
---|---|
org.hipparchus.analysis.differentiation |
This package holds the main interfaces and basic building block classes
dealing with differentiation.
|
org.hipparchus.fitting |
Classes to perform curve fitting.
|
org.hipparchus.optim.nonlinear.vector.leastsquares |
This package provides algorithms that minimize the residuals
between observations and model values.
|
Modifier and Type | Class | Description |
---|---|---|
class |
JacobianFunction |
Class representing the Jacobian of a multivariate vector function.
|
Modifier and Type | Method | Description |
---|---|---|
MultivariateMatrixFunction |
AbstractCurveFitter.TheoreticalValuesFunction.getModelFunctionJacobian() |
Modifier and Type | Method | Description |
---|---|---|
static LeastSquaresProblem |
LeastSquaresFactory.create(MultivariateVectorFunction model,
MultivariateMatrixFunction jacobian,
double[] observed,
double[] start,
RealMatrix weight,
ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
int maxEvaluations,
int maxIterations) |
Create a
LeastSquaresProblem
from the given elements. |
LeastSquaresBuilder |
LeastSquaresBuilder.model(MultivariateVectorFunction value,
MultivariateMatrixFunction jacobian) |
Configure the model function.
|
static MultivariateJacobianFunction |
LeastSquaresFactory.model(MultivariateVectorFunction value,
MultivariateMatrixFunction jacobian) |
Combine a
MultivariateVectorFunction with a MultivariateMatrixFunction to produce a MultivariateJacobianFunction . |
Copyright © 2016–2018 Hipparchus.org. All rights reserved.