| Package | Description | 
|---|---|
| org.hipparchus.distribution.continuous | 
 Implementations of common continuous distributions. 
 | 
| org.hipparchus.random | 
 Random number and random data generators. 
 | 
| org.hipparchus.samples | |
| org.hipparchus.stat.fitting | 
 Statistical methods for fitting distributions. 
 | 
| org.hipparchus.stat.inference | 
 Classes providing hypothesis testing. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractRealDistribution
Base class for probability distributions on the reals. 
 | 
class  | 
BetaDistribution
Implements the Beta distribution. 
 | 
class  | 
CauchyDistribution
Implementation of the Cauchy distribution. 
 | 
class  | 
ChiSquaredDistribution
Implementation of the chi-squared distribution. 
 | 
class  | 
ConstantRealDistribution
Implementation of the constant real distribution. 
 | 
class  | 
EnumeratedRealDistribution
Implementation of a real-valued  
EnumeratedDistribution. | 
class  | 
ExponentialDistribution
Implementation of the exponential distribution. 
 | 
class  | 
FDistribution
Implementation of the F-distribution. 
 | 
class  | 
GammaDistribution
Implementation of the Gamma distribution. 
 | 
class  | 
GumbelDistribution
This class implements the Gumbel distribution. 
 | 
class  | 
LaplaceDistribution
This class implements the Laplace distribution. 
 | 
class  | 
LevyDistribution
This class implements the 
 Lévy distribution. 
 | 
class  | 
LogisticDistribution
This class implements the Logistic distribution. 
 | 
class  | 
LogNormalDistribution
Implementation of the log-normal (gaussian) distribution. 
 | 
class  | 
NakagamiDistribution
This class implements the Nakagami distribution. 
 | 
class  | 
NormalDistribution
Implementation of the normal (gaussian) distribution. 
 | 
class  | 
ParetoDistribution
Implementation of the Pareto distribution. 
 | 
class  | 
TDistribution
Implementation of Student's t-distribution. 
 | 
class  | 
TriangularDistribution
Implementation of the triangular real distribution. 
 | 
class  | 
UniformRealDistribution
Implementation of the uniform real distribution. 
 | 
class  | 
WeibullDistribution
Implementation of the Weibull distribution. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
double | 
RandomDataGenerator.nextDeviate(RealDistribution dist)
Returns a random deviate from the given distribution. 
 | 
double[] | 
RandomDataGenerator.nextDeviates(RealDistribution dist,
            int size)
Returns an array of random deviates from the given distribution. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static void | 
RealDistributionComparison.addCDFSeries(com.xeiam.xchart.Chart chart,
            RealDistribution distribution,
            String desc,
            int lowerBound,
            int upperBound)  | 
static void | 
RealDistributionComparison.addPDFSeries(com.xeiam.xchart.Chart chart,
            RealDistribution distribution,
            String desc,
            int lowerBound,
            int upperBound)  | 
static JComponent | 
RealDistributionComparison.createComponent(String distributionName,
               int minX,
               int maxX,
               String[] seriesText,
               RealDistribution... series)  | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
EmpiricalDistribution
Represents an 
 empirical probability distribution -- a probability distribution derived
 from observed data without making any assumptions about the functional form
 of the population distribution that the data come from. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected RealDistribution | 
EmpiricalDistribution.getKernel(StreamingStatistics bStats)
The within-bin smoothing kernel. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
double | 
KolmogorovSmirnovTest.kolmogorovSmirnovStatistic(RealDistribution distribution,
                          double[] data)
Computes the one-sample Kolmogorov-Smirnov test statistic, \(D_n=\sup_x |F_n(x)-F(x)|\) where
 \(F\) is the distribution (cdf) function associated with  
distribution, \(n\) is the
 length of data and \(F_n\) is the empirical distribution that puts mass \(1/n\) at
 each of the values in data. | 
static double | 
InferenceTestUtils.kolmogorovSmirnovStatistic(RealDistribution dist,
                          double[] data)  | 
double | 
KolmogorovSmirnovTest.kolmogorovSmirnovTest(RealDistribution distribution,
                     double[] data)
Computes the p-value, or observed significance level, of a one-sample  Kolmogorov-Smirnov test
 evaluating the null hypothesis that  
data conforms to distribution. | 
static double | 
InferenceTestUtils.kolmogorovSmirnovTest(RealDistribution dist,
                     double[] data)  | 
double | 
KolmogorovSmirnovTest.kolmogorovSmirnovTest(RealDistribution distribution,
                     double[] data,
                     boolean exact)
Computes the p-value, or observed significance level, of a one-sample  Kolmogorov-Smirnov test
 evaluating the null hypothesis that  
data conforms to distribution. | 
static double | 
InferenceTestUtils.kolmogorovSmirnovTest(RealDistribution dist,
                     double[] data,
                     boolean strict)  | 
boolean | 
KolmogorovSmirnovTest.kolmogorovSmirnovTest(RealDistribution distribution,
                     double[] data,
                     double alpha)
Performs a  Kolmogorov-Smirnov
 test evaluating the null hypothesis that  
data conforms to distribution. | 
static boolean | 
InferenceTestUtils.kolmogorovSmirnovTest(RealDistribution dist,
                     double[] data,
                     double alpha)  | 
Copyright © 2016–2017 Hipparchus.org. All rights reserved.