| Package | Description | 
|---|---|
| org.hipparchus.optim.nonlinear.vector.leastsquares | 
 This package provides algorithms that minimize the residuals
 between observations and model values. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
static interface  | 
LeastSquaresOptimizer.Optimum
The optimum found by the optimizer. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractEvaluation
An implementation of  
LeastSquaresProblem.Evaluation that is designed for extension. | 
| Modifier and Type | Method and Description | 
|---|---|
LeastSquaresProblem.Evaluation | 
LeastSquaresProblem.evaluate(RealVector point)
Evaluate the model at the specified point. 
 | 
LeastSquaresProblem.Evaluation | 
LeastSquaresAdapter.evaluate(RealVector point)
Evaluate the model at the specified point. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static ConvergenceChecker<LeastSquaresProblem.Evaluation> | 
LeastSquaresFactory.evaluationChecker(ConvergenceChecker<PointVectorValuePair> checker)
View a convergence checker specified for a  
PointVectorValuePair as one
 specified for an LeastSquaresProblem.Evaluation. | 
ConvergenceChecker<LeastSquaresProblem.Evaluation> | 
LeastSquaresAdapter.getConvergenceChecker()
Gets the convergence checker. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
boolean | 
EvaluationRmsChecker.converged(int iteration,
         LeastSquaresProblem.Evaluation previous,
         LeastSquaresProblem.Evaluation current)
Check if the optimization algorithm has converged. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
LeastSquaresBuilder | 
LeastSquaresBuilder.checker(ConvergenceChecker<LeastSquaresProblem.Evaluation> newChecker)
Configure the convergence checker. 
 | 
static LeastSquaresProblem | 
LeastSquaresFactory.create(MultivariateJacobianFunction model,
      RealVector observed,
      RealVector start,
      ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
      int maxEvaluations,
      int maxIterations)
Create a  
LeastSquaresProblem
 from the given elements. | 
static LeastSquaresProblem | 
LeastSquaresFactory.create(MultivariateJacobianFunction model,
      RealVector observed,
      RealVector start,
      RealMatrix weight,
      ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
      int maxEvaluations,
      int maxIterations)
Create a  
LeastSquaresProblem
 from the given elements. | 
static LeastSquaresProblem | 
LeastSquaresFactory.create(MultivariateJacobianFunction model,
      RealVector observed,
      RealVector start,
      RealMatrix weight,
      ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
      int maxEvaluations,
      int maxIterations,
      boolean lazyEvaluation,
      ParameterValidator paramValidator)
Create a  
LeastSquaresProblem
 from the given elements. | 
static LeastSquaresProblem | 
LeastSquaresFactory.create(MultivariateVectorFunction model,
      MultivariateMatrixFunction jacobian,
      double[] observed,
      double[] start,
      RealMatrix weight,
      ConvergenceChecker<LeastSquaresProblem.Evaluation> checker,
      int maxEvaluations,
      int maxIterations)
Create a  
LeastSquaresProblem
 from the given elements. | 
Copyright © 2016–2017 Hipparchus.org. All rights reserved.