| Package | Description | 
|---|---|
| org.hipparchus.optim.nonlinear.vector.leastsquares | 
 This package provides algorithms that minimize the residuals
 between observations and model values. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
LeastSquaresBuilder | 
LeastSquaresBuilder.checker(ConvergenceChecker<LeastSquaresProblem.Evaluation> newChecker)
Configure the convergence checker. 
 | 
LeastSquaresBuilder | 
LeastSquaresBuilder.checkerPair(ConvergenceChecker<PointVectorValuePair> newChecker)
Configure the convergence checker. 
 | 
LeastSquaresBuilder | 
LeastSquaresBuilder.lazyEvaluation(boolean newValue)
Configure whether evaluation will be lazy or not. 
 | 
LeastSquaresBuilder | 
LeastSquaresBuilder.maxEvaluations(int newMaxEvaluations)
Configure the max evaluations. 
 | 
LeastSquaresBuilder | 
LeastSquaresBuilder.maxIterations(int newMaxIterations)
Configure the max iterations. 
 | 
LeastSquaresBuilder | 
LeastSquaresBuilder.model(MultivariateJacobianFunction newModel)
Configure the model function. 
 | 
LeastSquaresBuilder | 
LeastSquaresBuilder.model(MultivariateVectorFunction value,
     MultivariateMatrixFunction jacobian)
Configure the model function. 
 | 
LeastSquaresBuilder | 
LeastSquaresBuilder.parameterValidator(ParameterValidator newValidator)
Configure the validator of the model parameters. 
 | 
LeastSquaresBuilder | 
LeastSquaresBuilder.start(double[] newStart)
Configure the initial guess. 
 | 
LeastSquaresBuilder | 
LeastSquaresBuilder.start(RealVector newStart)
Configure the initial guess. 
 | 
LeastSquaresBuilder | 
LeastSquaresBuilder.target(double[] newTarget)
Configure the observed data. 
 | 
LeastSquaresBuilder | 
LeastSquaresBuilder.target(RealVector newTarget)
Configure the observed data. 
 | 
LeastSquaresBuilder | 
LeastSquaresBuilder.weight(RealMatrix newWeight)
Configure the weight matrix. 
 | 
Copyright © 2016–2017 Hipparchus.org. All rights reserved.