T - the type of the field elementspublic class FieldDerivativeStructure<T extends RealFieldElement<T>> extends Object implements RealFieldElement<FieldDerivativeStructure<T>>
This class is similar to DerivativeStructure except function
parameters and value can be any RealFieldElement.
Instances of this class are guaranteed to be immutable.
DerivativeStructure,
FDSFactory,
DSCompiler| Modifier and Type | Method and Description |
|---|---|
FieldDerivativeStructure<T> |
abs()
absolute value.
|
FieldDerivativeStructure<T> |
acos()
Arc cosine operation.
|
FieldDerivativeStructure<T> |
acosh()
Inverse hyperbolic cosine operation.
|
FieldDerivativeStructure<T> |
add(double a)
'+' operator.
|
FieldDerivativeStructure<T> |
add(FieldDerivativeStructure<T> a)
Compute this + a.
|
FieldDerivativeStructure<T> |
add(T a)
'+' operator.
|
FieldDerivativeStructure<T> |
asin()
Arc sine operation.
|
FieldDerivativeStructure<T> |
asinh()
Inverse hyperbolic sine operation.
|
FieldDerivativeStructure<T> |
atan()
Arc tangent operation.
|
FieldDerivativeStructure<T> |
atan2(FieldDerivativeStructure<T> x)
Two arguments arc tangent operation.
|
static <T extends RealFieldElement<T>> |
atan2(FieldDerivativeStructure<T> y,
FieldDerivativeStructure<T> x)
Two arguments arc tangent operation.
|
FieldDerivativeStructure<T> |
atanh()
Inverse hyperbolic tangent operation.
|
FieldDerivativeStructure<T> |
cbrt()
Cubic root.
|
FieldDerivativeStructure<T> |
ceil()
Get the smallest whole number larger than instance.
|
FieldDerivativeStructure<T> |
compose(double... f)
Compute composition of the instance by a univariate function.
|
FieldDerivativeStructure<T> |
compose(T... f)
Compute composition of the instance by a univariate function.
|
FieldDerivativeStructure<T> |
copySign(double sign)
Returns the instance with the sign of the argument.
|
FieldDerivativeStructure<T> |
copySign(FieldDerivativeStructure<T> sign)
Returns the instance with the sign of the argument.
|
FieldDerivativeStructure<T> |
copySign(T sign)
Returns the instance with the sign of the argument.
|
FieldDerivativeStructure<T> |
cos()
Cosine operation.
|
FieldDerivativeStructure<T> |
cosh()
Hyperbolic cosine operation.
|
FieldDerivativeStructure<T> |
divide(double a)
'÷' operator.
|
FieldDerivativeStructure<T> |
divide(FieldDerivativeStructure<T> a)
Compute this ÷ a.
|
FieldDerivativeStructure<T> |
divide(T a)
'÷' operator.
|
FieldDerivativeStructure<T> |
exp()
Exponential.
|
FieldDerivativeStructure<T> |
expm1()
Exponential minus 1.
|
FieldDerivativeStructure<T> |
floor()
Get the largest whole number smaller than instance.
|
T[] |
getAllDerivatives()
Get all partial derivatives.
|
int |
getExponent()
Return the exponent of the instance value, removing the bias.
|
FDSFactory<T> |
getFactory()
Get the factory that built the instance.
|
Field<FieldDerivativeStructure<T>> |
getField()
Get the
Field to which the instance belongs. |
int |
getFreeParameters()
Get the number of free parameters.
|
int |
getOrder()
Get the derivation order.
|
T |
getPartialDerivative(int... orders)
Get a partial derivative.
|
double |
getReal()
Get the real value of the number.
|
T |
getValue()
Get the value part of the derivative structure.
|
FieldDerivativeStructure<T> |
hypot(FieldDerivativeStructure<T> y)
Returns the hypotenuse of a triangle with sides
this and y
- sqrt(this2 +y2)
avoiding intermediate overflow or underflow. |
static <T extends RealFieldElement<T>> |
hypot(FieldDerivativeStructure<T> x,
FieldDerivativeStructure<T> y)
Returns the hypotenuse of a triangle with sides
x and y
- sqrt(x2 +y2)
avoiding intermediate overflow or underflow. |
FieldDerivativeStructure<T> |
linearCombination(double[] a,
FieldDerivativeStructure<T>[] b)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(double a1,
FieldDerivativeStructure<T> b1,
double a2,
FieldDerivativeStructure<T> b2)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(double a1,
FieldDerivativeStructure<T> b1,
double a2,
FieldDerivativeStructure<T> b2,
double a3,
FieldDerivativeStructure<T> b3)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(double a1,
FieldDerivativeStructure<T> b1,
double a2,
FieldDerivativeStructure<T> b2,
double a3,
FieldDerivativeStructure<T> b3,
double a4,
FieldDerivativeStructure<T> b4)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(FieldDerivativeStructure<T>[] a,
FieldDerivativeStructure<T>[] b)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(FieldDerivativeStructure<T> a1,
FieldDerivativeStructure<T> b1,
FieldDerivativeStructure<T> a2,
FieldDerivativeStructure<T> b2)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(FieldDerivativeStructure<T> a1,
FieldDerivativeStructure<T> b1,
FieldDerivativeStructure<T> a2,
FieldDerivativeStructure<T> b2,
FieldDerivativeStructure<T> a3,
FieldDerivativeStructure<T> b3)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(FieldDerivativeStructure<T> a1,
FieldDerivativeStructure<T> b1,
FieldDerivativeStructure<T> a2,
FieldDerivativeStructure<T> b2,
FieldDerivativeStructure<T> a3,
FieldDerivativeStructure<T> b3,
FieldDerivativeStructure<T> a4,
FieldDerivativeStructure<T> b4)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(T[] a,
FieldDerivativeStructure<T>[] b)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(T a1,
FieldDerivativeStructure<T> b1,
T a2,
FieldDerivativeStructure<T> b2)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(T a1,
FieldDerivativeStructure<T> b1,
T a2,
FieldDerivativeStructure<T> b2,
T a3,
FieldDerivativeStructure<T> b3)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
linearCombination(T a1,
FieldDerivativeStructure<T> b1,
T a2,
FieldDerivativeStructure<T> b2,
T a3,
FieldDerivativeStructure<T> b3,
T a4,
FieldDerivativeStructure<T> b4)
Compute a linear combination.
|
FieldDerivativeStructure<T> |
log()
Natural logarithm.
|
FieldDerivativeStructure<T> |
log10()
Base 10 logarithm.
|
FieldDerivativeStructure<T> |
log1p()
Shifted natural logarithm.
|
FieldDerivativeStructure<T> |
multiply(double a)
'×' operator.
|
FieldDerivativeStructure<T> |
multiply(FieldDerivativeStructure<T> a)
Compute this × a.
|
FieldDerivativeStructure<T> |
multiply(int n)
Compute n × this.
|
FieldDerivativeStructure<T> |
multiply(T a)
'×' operator.
|
FieldDerivativeStructure<T> |
negate()
Returns the additive inverse of
this element. |
FieldDerivativeStructure<T> |
pow(double p)
Power operation.
|
static <T extends RealFieldElement<T>> |
pow(double a,
FieldDerivativeStructure<T> x)
Compute ax where a is a double and x a
FieldDerivativeStructure |
FieldDerivativeStructure<T> |
pow(FieldDerivativeStructure<T> e)
Power operation.
|
FieldDerivativeStructure<T> |
pow(int n)
Integer power operation.
|
FieldDerivativeStructure<T> |
reciprocal()
Returns the multiplicative inverse of
this element. |
FieldDerivativeStructure<T> |
remainder(double a)
IEEE remainder operator.
|
FieldDerivativeStructure<T> |
remainder(FieldDerivativeStructure<T> a)
IEEE remainder operator.
|
FieldDerivativeStructure<T> |
remainder(T a)
IEEE remainder operator.
|
FieldDerivativeStructure<T> |
rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.
|
FieldDerivativeStructure<T> |
rootN(int n)
Nth root.
|
long |
round()
Get the closest long to instance value.
|
FieldDerivativeStructure<T> |
scalb(int n)
Multiply the instance by a power of 2.
|
FieldDerivativeStructure<T> |
signum()
Compute the signum of the instance.
|
FieldDerivativeStructure<T> |
sin()
Sine operation.
|
FieldDerivativeStructure<T> |
sinh()
Hyperbolic sine operation.
|
FieldDerivativeStructure<T> |
sqrt()
Square root.
|
FieldDerivativeStructure<T> |
subtract(double a)
'-' operator.
|
FieldDerivativeStructure<T> |
subtract(FieldDerivativeStructure<T> a)
Compute this - a.
|
FieldDerivativeStructure<T> |
subtract(T a)
'-' operator.
|
FieldDerivativeStructure<T> |
tan()
Tangent operation.
|
FieldDerivativeStructure<T> |
tanh()
Hyperbolic tangent operation.
|
T |
taylor(double... delta)
Evaluate Taylor expansion of a derivative structure.
|
T |
taylor(T... delta)
Evaluate Taylor expansion of a derivative structure.
|
FieldDerivativeStructure<T> |
toDegrees()
Convert radians to degrees, with error of less than 0.5 ULP
|
FieldDerivativeStructure<T> |
toRadians()
Convert degrees to radians, with error of less than 0.5 ULP
|
public FDSFactory<T> getFactory()
public int getFreeParameters()
public int getOrder()
public double getReal()
getReal in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public T getValue()
getPartialDerivative(int...)public T getPartialDerivative(int... orders) throws MathIllegalArgumentException
orders - derivation orders with respect to each variable (if all orders are 0,
the value is returned)MathIllegalArgumentException - if the numbers of variables does not
match the instanceMathIllegalArgumentException - if sum of derivation orders is larger
than the instance limitsgetValue()public T[] getAllDerivatives()
DSCompiler.getPartialDerivativeIndex(int...)public FieldDerivativeStructure<T> add(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> add(double a)
add in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> add(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
add in interface FieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - element to addMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> subtract(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> subtract(double a)
subtract in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> subtract(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
subtract in interface FieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - element to subtractMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> multiply(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> multiply(int n)
multiply in interface FieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>n - Number of times this must be added to itself.public FieldDerivativeStructure<T> multiply(double a)
multiply in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> multiply(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
multiply in interface FieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - element to multiplyMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> divide(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> divide(double a)
divide in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> divide(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
divide in interface FieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - element to divide byMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> remainder(T a)
a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> remainder(double a)
remainder in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorpublic FieldDerivativeStructure<T> remainder(FieldDerivativeStructure<T> a) throws MathIllegalArgumentException
remainder in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - right hand side parameter of the operatorMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> negate()
this element.negate in interface FieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>this.public FieldDerivativeStructure<T> abs()
abs in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> ceil()
ceil in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> floor()
floor in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> rint()
rint in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public long round()
round in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>RealFieldElement.getReal()public FieldDerivativeStructure<T> signum()
signum in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> copySign(T sign)
sign argument is treated as positive.sign - the sign for the returned valuesign argumentpublic FieldDerivativeStructure<T> copySign(double sign)
sign argument is treated as positive.copySign in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>sign - the sign for the returned valuesign argumentpublic FieldDerivativeStructure<T> copySign(FieldDerivativeStructure<T> sign)
sign argument is treated as positive.copySign in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>sign - the sign for the returned valuesign argumentpublic int getExponent()
For double numbers of the form 2x, the unbiased exponent is exactly x.
public FieldDerivativeStructure<T> scalb(int n)
scalb in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>n - power of 2public FieldDerivativeStructure<T> hypot(FieldDerivativeStructure<T> y) throws MathIllegalArgumentException
this and y
- sqrt(this2 +y2)
avoiding intermediate overflow or underflow.
hypot in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>y - a valueMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic static <T extends RealFieldElement<T>> FieldDerivativeStructure<T> hypot(FieldDerivativeStructure<T> x, FieldDerivativeStructure<T> y) throws MathIllegalArgumentException
x and y
- sqrt(x2 +y2)
avoiding intermediate overflow or underflow.
T - the type of the field elementsx - a valuey - a valueMathIllegalArgumentException - if number of free parameters
or orders do not match@SafeVarargs public final FieldDerivativeStructure<T> compose(T... f) throws MathIllegalArgumentException
f - array of value and derivatives of the function at
the current point (i.e. [f(getValue()),
f'(getValue()), f''(getValue())...]).MathIllegalArgumentException - if the number of derivatives
in the array is not equal to order + 1public FieldDerivativeStructure<T> compose(double... f) throws MathIllegalArgumentException
f - array of value and derivatives of the function at
the current point (i.e. [f(getValue()),
f'(getValue()), f''(getValue())...]).MathIllegalArgumentException - if the number of derivatives
in the array is not equal to order + 1public FieldDerivativeStructure<T> reciprocal()
this element.reciprocal in interface FieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>reciprocal in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>this.public FieldDerivativeStructure<T> sqrt()
sqrt in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> cbrt()
cbrt in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> rootN(int n)
rootN in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>n - order of the rootpublic Field<FieldDerivativeStructure<T>> getField()
Field to which the instance belongs.getField in interface FieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>Field to which the instance belongspublic static <T extends RealFieldElement<T>> FieldDerivativeStructure<T> pow(double a, FieldDerivativeStructure<T> x)
FieldDerivativeStructureT - the type of the field elementsa - number to exponentiatex - power to applypublic FieldDerivativeStructure<T> pow(double p)
pow in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>p - power to applypublic FieldDerivativeStructure<T> pow(int n)
pow in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>n - power to applypublic FieldDerivativeStructure<T> pow(FieldDerivativeStructure<T> e) throws MathIllegalArgumentException
pow in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>e - exponentMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> exp()
exp in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> expm1()
expm1 in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> log()
log in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> log1p()
log1p in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> log10()
log10 in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> cos()
cos in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> sin()
sin in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> tan()
tan in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> acos()
acos in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> asin()
asin in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> atan()
atan in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> atan2(FieldDerivativeStructure<T> x) throws MathIllegalArgumentException
atan2 in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>x - second argument of the arc tangentMathIllegalArgumentException - if number of free parameters or orders are inconsistentpublic static <T extends RealFieldElement<T>> FieldDerivativeStructure<T> atan2(FieldDerivativeStructure<T> y, FieldDerivativeStructure<T> x) throws MathIllegalArgumentException
T - the type of the field elementsy - first argument of the arc tangentx - second argument of the arc tangentMathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> cosh()
cosh in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> sinh()
sinh in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> tanh()
tanh in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> acosh()
acosh in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> asinh()
asinh in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> atanh()
atanh in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>public FieldDerivativeStructure<T> toDegrees()
public FieldDerivativeStructure<T> toRadians()
@SafeVarargs public final T taylor(T... delta) throws MathRuntimeException
delta - parameters offsets (Δx, Δy, ...)MathRuntimeException - if factorials becomes too largepublic T taylor(double... delta) throws MathRuntimeException
delta - parameters offsets (Δx, Δy, ...)MathRuntimeException - if factorials becomes too largepublic FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T>[] a, FieldDerivativeStructure<T>[] b) throws MathIllegalArgumentException
linearCombination in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> linearCombination(T[] a, FieldDerivativeStructure<T>[] b) throws MathIllegalArgumentException
a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if arrays dimensions don't matchpublic FieldDerivativeStructure<T> linearCombination(double[] a, FieldDerivativeStructure<T>[] b) throws MathIllegalArgumentException
linearCombination in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a - Factors.b - Factors.Σi ai bi.MathIllegalArgumentException - if number of free parameters
or orders do not matchpublic FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2) throws MathIllegalArgumentException
linearCombination in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termMathIllegalArgumentException - if number of free parameters
or orders do not matchRealFieldElement.linearCombination(Object, Object, Object, Object, Object, Object),
RealFieldElement.linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)public FieldDerivativeStructure<T> linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2) throws MathIllegalArgumentException
a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termMathIllegalArgumentException - if number of free parameters or orders are inconsistentRealFieldElement.linearCombination(double, Object, double, Object, double, Object),
RealFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)public FieldDerivativeStructure<T> linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2) throws MathIllegalArgumentException
linearCombination in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second termMathIllegalArgumentException - if number of free parameters
or orders do not matchRealFieldElement.linearCombination(double, Object, double, Object, double, Object),
RealFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)public FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3) throws MathIllegalArgumentException
linearCombination in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termMathIllegalArgumentException - if number of free parameters
or orders do not matchRealFieldElement.linearCombination(Object, Object, Object, Object),
RealFieldElement.linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)public FieldDerivativeStructure<T> linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3) throws MathIllegalArgumentException
a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termMathIllegalArgumentException - if number of free parameters or orders are inconsistentRealFieldElement.linearCombination(double, Object, double, Object),
RealFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)public FieldDerivativeStructure<T> linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3) throws MathIllegalArgumentException
linearCombination in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third termMathIllegalArgumentException - if number of free parameters
or orders do not matchRealFieldElement.linearCombination(double, Object, double, Object),
RealFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)public FieldDerivativeStructure<T> linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3, FieldDerivativeStructure<T> a4, FieldDerivativeStructure<T> b4) throws MathIllegalArgumentException
linearCombination in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the fourth termb4 - second factor of the fourth termMathIllegalArgumentException - if number of free parameters
or orders do not matchRealFieldElement.linearCombination(Object, Object, Object, Object),
RealFieldElement.linearCombination(Object, Object, Object, Object, Object, Object)public FieldDerivativeStructure<T> linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3, T a4, FieldDerivativeStructure<T> b4) throws MathIllegalArgumentException
a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the third termb4 - second factor of the third termMathIllegalArgumentException - if number of free parameters or orders are inconsistentRealFieldElement.linearCombination(double, Object, double, Object),
RealFieldElement.linearCombination(double, Object, double, Object, double, Object)public FieldDerivativeStructure<T> linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3, double a4, FieldDerivativeStructure<T> b4) throws MathIllegalArgumentException
linearCombination in interface RealFieldElement<FieldDerivativeStructure<T extends RealFieldElement<T>>>a1 - first factor of the first termb1 - second factor of the first terma2 - first factor of the second termb2 - second factor of the second terma3 - first factor of the third termb3 - second factor of the third terma4 - first factor of the fourth termb4 - second factor of the fourth termMathIllegalArgumentException - if number of free parameters
or orders do not matchRealFieldElement.linearCombination(double, Object, double, Object),
RealFieldElement.linearCombination(double, Object, double, Object, double, Object)Copyright © 2016–2017 Hipparchus.org. All rights reserved.