public class PolynomialFunction extends Object implements UnivariateDifferentiableFunction, Serializable
Horner's Method is used to evaluate the function.
Modifier and Type | Class and Description |
---|---|
static class |
PolynomialFunction.Parametric
Dedicated parametric polynomial class.
|
Constructor and Description |
---|
PolynomialFunction(double[] c)
Construct a polynomial with the given coefficients.
|
Modifier and Type | Method and Description |
---|---|
PolynomialFunction |
add(PolynomialFunction p)
Add a polynomial to the instance.
|
int |
degree()
Returns the degree of the polynomial.
|
protected static double[] |
differentiate(double[] coefficients)
Returns the coefficients of the derivative of the polynomial with the given coefficients.
|
boolean |
equals(Object obj) |
protected static double |
evaluate(double[] coefficients,
double argument)
Uses Horner's Method to evaluate the polynomial with the given coefficients at
the argument.
|
double[] |
getCoefficients()
Returns a copy of the coefficients array.
|
int |
hashCode() |
PolynomialFunction |
multiply(PolynomialFunction p)
Multiply the instance by a polynomial.
|
PolynomialFunction |
negate()
Negate the instance.
|
PolynomialFunction |
polynomialDerivative()
Returns the derivative as a
PolynomialFunction . |
PolynomialFunction |
subtract(PolynomialFunction p)
Subtract a polynomial from the instance.
|
String |
toString()
Returns a string representation of the polynomial.
|
DerivativeStructure |
value(DerivativeStructure t)
Simple mathematical function.
|
double |
value(double x)
Compute the value of the function for the given argument.
|
public PolynomialFunction(double[] c) throws MathIllegalArgumentException, NullArgumentException
The constructor makes a copy of the input array and assigns the copy to the coefficients property.
c
- Polynomial coefficients.NullArgumentException
- if c
is null
.MathIllegalArgumentException
- if c
is empty.public double value(double x)
The value returned is
coefficients[n] * x^n + ... + coefficients[1] * x + coefficients[0]
value
in interface UnivariateFunction
x
- Argument for which the function value should be computed.UnivariateFunction.value(double)
public int degree()
public double[] getCoefficients()
Changes made to the returned copy will not affect the coefficients of the polynomial.
protected static double evaluate(double[] coefficients, double argument) throws MathIllegalArgumentException, NullArgumentException
coefficients
- Coefficients of the polynomial to evaluate.argument
- Input value.MathIllegalArgumentException
- if coefficients
is empty.NullArgumentException
- if coefficients
is null
.public DerivativeStructure value(DerivativeStructure t) throws MathIllegalArgumentException, NullArgumentException
UnivariateDifferentiableFunction
classes compute both the
value and the first derivative of the function.
value
in interface UnivariateDifferentiableFunction
t
- function input valueMathIllegalArgumentException
- if coefficients
is empty.NullArgumentException
- if coefficients
is null
.public PolynomialFunction add(PolynomialFunction p)
p
- Polynomial to add.p
.public PolynomialFunction subtract(PolynomialFunction p)
p
- Polynomial to subtract.p
.public PolynomialFunction negate()
public PolynomialFunction multiply(PolynomialFunction p)
p
- Polynomial to multiply by.p
protected static double[] differentiate(double[] coefficients) throws MathIllegalArgumentException, NullArgumentException
coefficients
- Coefficients of the polynomial to differentiate.null
if coefficients has length 1.MathIllegalArgumentException
- if coefficients
is empty.NullArgumentException
- if coefficients
is null
.public PolynomialFunction polynomialDerivative()
PolynomialFunction
.public String toString()
The representation is user oriented. Terms are displayed lowest
degrees first. The multiplications signs, coefficients equals to
one and null terms are not displayed (except if the polynomial is 0,
in which case the 0 constant term is displayed). Addition of terms
with negative coefficients are replaced by subtraction of terms
with positive coefficients except for the first displayed term
(i.e. we display -3
for a constant negative polynomial,
but 1 - 3 x + x^2
if the negative coefficient is not
the first one displayed).
Copyright © 2016 Hipparchus.org. All rights reserved.